HW # 1 Solution to part C

let \(D = \{ A, C, G, T \} \). At any point in time a DNA segment \(l \) of length \(m \) is an element of \(D^m = D \times \cdots \times D \), where \(m \) times \((m \) could be zero here, in which case \(D^m \) is just the empty string). Since insertions and deletions are allowed \(m \) may vary. Let \(S = \bigcup_{m=0}^{\infty} D^m \). This is the most general state space.

Note: An alternative representation of the state space is \(S = \{ l : l = (l_1, l_2, \ldots) \text{ and } l_j \in \mathbb{D} \} \).

s.t. \(j > j(l) \) \(l_j = 0 \) and for \(j < j(l) \) \(l_j \in \mathbb{D}^j \).

In the above setting \(l_j = 0 \) means that the \(j \)th slot is empty.

The assumption above that \(l_j \in \mathbb{D} \) for \(j < j(l) \) and \(l_j = 0 \) for \(j > j(l) \) is essential. This assumption ensures that each DNA segment has a unique representation.