Math 289a Notes

Notetaker: Chris Chang
for 27 October 2008

Strong Approximations

(Komlós-Major-Tusnády, 1975)

A Poisson process N (with rate 1) and a standard one-dimensional Brownian motion W can be constructed on a common probability space so that

$$\sup_{t \in [0, \infty)} \left| N(t) - t - W(t) \right| \sim (\log t) \lor 2 = \xi < \infty \text{ a.s.}$$

where $E[\exp(\alpha \xi)] < \infty$ for some $\alpha > 0$. ($a \lor b$ means $\max(a, b)$.)

[Note that the renewal CLT for N states that, if $\hat{N}^n(t) = N(nt) - nt \sqrt{n}$, $\forall t \geq 0$, then \hat{N}^n converges in distribution to W.] See Ethier-Kurtz for more details.

Before moving on, here’s a handy “bilingual dictionary” for probabilists talking with chemists:

<table>
<thead>
<tr>
<th>Chemistry</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>propensities</td>
<td>intensities</td>
</tr>
<tr>
<td>master equation</td>
<td>Kolmogorov forward equation</td>
</tr>
<tr>
<td>Langevin equation</td>
<td>diffusion approximations</td>
</tr>
<tr>
<td>van Kampen equation</td>
<td>(functional) central limit theorem</td>
</tr>
</tbody>
</table>

Biochemical Reaction Networks

General references

Chemical Reaction Network

Denoted by the 3-tuple (S, C, R).

S = finite set of species (e.g., $\{A_1, \ldots, A_n\}$ or $\{A, B, C, D, E\}$)

C = finite set of complexes (a complex is the left- or right-hand side of a reaction). We represent elements of C by vectors in \mathbb{N}^n – each element of C is an n-vector where the ith component of the vector designates the number of molecules of the ith species in the complex.

Examples: for the reaction $A + 2B \rightarrow C$, $A + 2B$ is represented by $egin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$, and C is represented by $egin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. For $\emptyset \rightarrow A$ (an “inflow” reaction), $\emptyset = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. ($A \rightarrow \emptyset$ would be an “outflow” reaction.)

Our model corresponds to a “continuous flow stirred tank reactor.” Imagine a mostly sealed tank with a stirrer in the middle, but with inflow and outflow tubes.

(Aside: If ν and ν' are complexes such that $\nu \rightarrow \nu'$ is a reaction, that reaction is “reversible” if $\nu' \rightarrow \nu$ is also a reaction.)

R is a finite set of reactions of the form $\nu \rightarrow \nu'$ where ν, ν' are in C.

Generically, a reaction has the form $\sum_{i=1}^n v_{ik} A_i \rightarrow \sum_{i=1}^n v'_{ik} A_i$. The kth reaction is $v_k \rightarrow v'_k$.

The stoichiometric matrix S has a row for each chemical species, and a column for each reaction. The kth column is equal to $v'_k - v_k$, i.e. the change in species counts that the kth reaction induces.

Microscopic Stochastic Model for Dynamics of Reaction Network

For each species i,

$X_i(t) =$ number of molecules of species i at time t.

$X = (X_1, \ldots, X_n)$ is assumed to be a Markov chain.

When the kth reaction is the only reaction that occurs at time t, $X(t) = X(t^-) + v'_k - v_k$, where t^- represents a time infinitesimally before t.

Given $x = (x_1, \ldots, x_n)$ as the current state of the system, assign to the kth reaction an exponential “alarm clock” with rate $\lambda_k(x)$ (intensity). (Note that exponential distributions are memoryless.)

Let N_1, \ldots, N_n be independent unit rate Poisson processes. Then for each k,
\[R_k(t) = N_k \left(\int_0^t \lambda_k(X(s)) \, ds \right) \]

= number of times \(k \)th reaction has occurred by time \(t \).

Then
\[X(t) = X(0) + \sum_{k=1}^{K} R_k(t)(\nu'_k - \nu_k) = X(0) + SR(t), \]

where \(R(t) := \begin{pmatrix} R_1(t) \\ \vdots \\ R_K(t) \end{pmatrix} \).

Mass-action kinetics

Example: Examples of binary reactions

\[A_1 + A_2 \xrightarrow{k} A_3 \]
\[\lambda(x) = \kappa x_1 x_2, \quad \kappa = \text{reaction rate constant} \]

\[A_1 + A_1 \xrightarrow{k} A_2 \]
\[\lambda(x) = \kappa x_1(x_1 - 1) \]

More generally for \(\sum_{i=1}^{n} \nu_{ik} A_i \xrightarrow{k} \sum_{i=1}^{n} \nu'_{ik} A_i \),
\[A_k(x) = \kappa_k \prod_{i=1}^{n} \frac{x_i}{\nu_{ik}}. \]

We can define the concentration vector as \(\frac{X(t)}{V} \) (where \(V \) is volume)

For the reaction \(A + B \xrightarrow{k} C \), the o.d.e. approximation for concentration is (where \(c = (c_A, c_B, c_C) \) is the vector with all three species concentrations)
\[\dot{c}_A = -\kappa A c_B \]
\[\dot{c}_B = -\kappa A c_B \]
\[\dot{c}_C = \kappa A c_B \]

How does \(\kappa \) depend on volume: cf. Gillespie

Consider the binary reaction \(A_1 + A_2 \rightarrow A_3 \) with mass action kinetics. How does the rate constant \(\kappa \) depend on volume?
Probability of producing a new molecule of A_3 in a small time interval of length δt: $\lambda(x) \delta t$, which is proportional to the probability that some molecule of A_1 collides with some molecule of A_2 in δt.

Take one molecule of A_1 and one of A_2. Geometrically, imagine A_1 as a sphere with radius r_1, and A_2 as a sphere with radius r_2, and let $r_{12} = r_1 + r_2$. A collision of the two occurs if the center of A_1 is within r_{12} of the center of A_2. For the purposes of our calculation we can imagine the center of A_2 as having a fixed random position in the volume V and A_1 as moving (relative to A_2) at an average speed of v_{12}. Also, at any instant of time, the “reaction sphere of A_1” is the sphere with center A_1 and radius r_{12} (if the center of A_2 lies within this sphere, then A_1 will react with A_2 to produce A_3).

The new volume swept out by A_1 in δt is proportional to $\pi r_{12}^2 v_{12} \delta t$, so the probability that the randomly distributed center of A_2 falls in this volume is proportional to $\pi r_{12}^2 v_{12} V \delta t$. So, to leading order, we have

$$\lambda(x) \delta(t) \propto \left(\frac{\pi r_{12}^2 v_{12} \delta t}{V} \right) \cdot \text{(number of ways of choosing a pair of molecules (A_1, A_2))}$$

so

$$\lambda(x) \delta(t) = \tilde{\kappa} x_1 x_2 \frac{V}{V} \delta t$$

for some constant $\tilde{\kappa}$.

More generally, $\lambda_k(x) = \frac{\tilde{\kappa}}{\prod_{i=1}^n v_{ik}} \prod_{i=1}^n \binom{x_i}{v_{ik}}$, where m_k is the number of molecules consumed in reaction k, i.e., $m_k = \sum_{i=1}^n v_{ik}$.