GI/GI/1 fluid model

\[\bar{Q}(t) = \bar{Q}(0) + (\lambda - \mu) t + \mu \bar{I}(t). \]

\(\bar{I}(0) \) is cts., non-decr. \(\lambda \) can incr. only when \(\bar{Q} \) is 0.
Fluid model is stable if \(\exists N > 0 \) s.t. for any fluid model sol'n \(\bar{Q}, \bar{Q}(t) = 0, \forall t \geq N/|\bar{Q}(0)|. \) (Scale by \(|\bar{Q}(0)|).)

Dai's Thm (1995) - see Bramson notes.

Impose mild conditions.
Assume interarrival times \(\{u_i\}_{i=1}^\infty \) have unbounded support, i.e. \(\forall K > 0 \) \(P(u_i > K) > 0. \) [Can be arbitrarily large.]
Consider \(\bar{x}^n(t) = (U^n(t), V^n(t)), (S_i^n)_{i=1}^\infty. \)

[Keep track of residual interarrival time \(U^n(t) \), residual service time for job in service \(V^n(t) \), \(\{S_i^n\}_{i=1}^\infty \) the "age" of \(i \)th job in the queue. The first job is in the head of the line.]
We make the sequence infinite. If no \(i \)th job, make \(S_i = -1. \)
Want to know how old the jobs are if we've more than 1 queue.

Recover queue length: \(Q^n(t) = \sum_{i=1}^{\infty} \{ S_i^n > 0 \} \).

Want to have \(\{ S_i^n \} \) in some deterministic space. So make its length infinite. \(\mathbb{R}_+ \times \mathbb{R}_+ \times (\mathbb{R}_+ \cup \{ -1 \})^N \) Markov state descriptor for GI/GI/1 queue.

Suppose fluid model is stable, then \(x^n \) is positive Harris recurrent for any \(n \). [Harris is from USC.]

Now have continuous state! \(\sup_{x \in A} \mathbb{E}_x [T^n_A(\delta)] < \infty \), where

\[
T^n_A(\delta) = \inf \{ t > 0 : x^n(t) \notin A \}, \quad \delta > 0 , \text{ continuous analog of "first return time"}, \quad A \text{ is some "petite" set.}
\]

Defn. A petite set \(A \) is a non-empty, measurable set for which \(\exists \) a prob. measure \(\mu \) on \((0, +\infty) \) & a non-trivial pos. measure \(\nu \), s.t. \(\nu(B) \leq \int_0^{+\infty} \mu_t(x, B)\mu(dx) \) \(\forall x \in A \& B \) meas. sets. \(\square \)

\[
[p^n_t(x, B) = P_x(x^n(t) \in B)]
\]
$p^*_t(x, \delta)$ is bounded below in some sense by some reference measure ν. Continuous analog of communicating property.

The converse of Dai's Thm is generally not true. Dai's Thm is useful in proving stability.

GI/GI/1 diffusion approx.

Consider $\lambda = \mu$ (balanced).

(Can also consider $n(\lambda^* - \mu^*) \to 0$ as $n \to \infty$.)

\[Q^n(t) = Q^n(0) + A(t) - S(T^n(t)). \]

\[\hat{Q}^n(t) = \frac{Q^n(n^2t)}{n} = \hat{Q}^n(0) + \frac{A(n^2t) - \lambda n^2t}{n} \]

\[- \frac{S(T^n(n^2t) - \mu T^n(n^2t))}{n} + \frac{\lambda n^2t - \mu n^2t}{n} + \frac{\mu n^2t - \mu T^n(n^2t)}{n} \]

\[= \hat{Q}^n(0) + \hat{A}^n(t) - \hat{S}^n(T^n(t)) + \mu \hat{I}^n(t). \]

\[\hat{A}^n(t) = \frac{A(n^2t) - \lambda n^2t}{n}, \quad \hat{S}^n(t) = \frac{S(n^2t) - \mu n^2t}{n}, \quad \hat{T}^n(t) \]

\[= \frac{T^n(n^2t)}{\lambda n^2}. \]

\[T^n(n^2t) = \int_0^{n^2t} \mathbf{1}_{\{Q^n(s) > 0\}} \, ds \times \frac{n^2t - T^n(n^2t)}{n} \]

\[= \frac{1}{n} \int_0^{n^2t} \mathbf{1}_{\{Q^n(s) = 0\}} \, ds = \hat{I}^n(t) = \frac{I^n(n^2t)}{n} \quad \text{non-decr. + incr. only} \]
when \(\hat{Q}^n = 0 \).]

\[
\hat{S} = \frac{S}{n^2}, \quad \hat{X}^n(t) = n \int_0^t 1 \left\{ Q^n(n^2\hat{S}) = 0 \right\} d\hat{S} = n \int_0^t 1 \left\{ \hat{X}(\hat{S}) = 0 \right\} d\hat{S}.
\]

Claim. \(\hat{X}^n(t) = \mu^{-1} \Phi \left(\hat{Q}^n(0) + \hat{A}^n(\cdot) - \hat{S}^n(\frac{\hat{T}^n(\cdot)}{n})) \right)(t) \forall t \geq 0, \)

where \(\Phi(x)(t) = \sup_{0 \leq s \leq t} x^- (s), \quad x^- (s) = \max(-x(s), 0) \). \(\Phi: \mathbb{D} \to \mathbb{D} \) (cts. mapping). \(\square \)

Suppose \(\hat{Q}^n (0) \Rightarrow \bar{Q}(0) \) & \(\hat{Q}^n (0) \) are indept. of \(\hat{A}^n, \hat{S}^n \).

\(\text{FCLT} \Rightarrow (\hat{A}^n, \hat{S}^n) \Rightarrow (B_a, B_s) \).

\(B_a \) is 1-dim BM (variance par. \(\lambda^3 \sigma_a^2 \)) and \(B_s \) is 1-dim BM (variance par. \(\mu^3 \sigma_s^2 \)). \(B_a, B_s \) indept.

\(\{ \hat{T}^n \}_{n=1}^\infty \) are C-tight and any weak limit pt. \(\bar{Q}(t) = \bar{Q}(0) + \lambda t - \mu \hat{T}(t) \). \(\bar{Q}^n(t) = \frac{\hat{Q}^n(t)}{n} \Rightarrow \bar{Q}(0) = 0. \)

\(\bar{Q}(t) = \lambda t - \mu \hat{T}(t) = (\lambda - \mu) t + \mu \hat{I}(t) = \mu \hat{I}(t) \).

For balanced fluid model, \(\bar{Q}(t) = \bar{Q}(0) \forall t \).

\(\Rightarrow \bar{I}(t) = 0 \forall t \Rightarrow \bar{T}(t) = t \forall t. \)

So conclude \(\bar{T}^n \Rightarrow \bar{T}(t) = t, \text{ all } t. \)

\[\text{Summa} \]
Summary

\((\hat{Q}^n(0), \hat{A}^n, \hat{S}^n, \hat{T}^n) \Rightarrow (\hat{Q}(0), B_a, B_s, \hat{T})\) as
\(n \to \infty\). For \(\hat{X}^n(t) = \hat{Q}^n(0) + \hat{A}^n(t) - \hat{S}^n(\hat{T}^n(t))\),
\(\hat{X}^n \Rightarrow \hat{X}\) where \(\hat{X}(t) = \hat{Q}^n(0) + B_a(t) - B_s(t)\). BM
var. par. \(\lambda^3 \sigma_a^2 + \mu^3 \sigma_s^2\).

\(\hat{Q}^n(t) = \hat{X}^n(t) + \Phi(\hat{X}^n)(t) = \psi(\hat{X}^n)(t)\).

\(\psi(x)(t) = x(t) \Phi + \Phi(x)(t)\).

\(\psi: D \to D\) is cts. By cts. mapping thm, \(\psi(\hat{X}^n) \Rightarrow \psi(\hat{X}) \Rightarrow \hat{Q}^n \Rightarrow \hat{Q}\), where \(\hat{Q}(t) = \hat{X}(t) + \Phi(\hat{X})(t)\). BM, \(\Phi(\hat{X})\) cts., non-decr. + incr. only when \(\hat{Q} = 0\).
\(\hat{Q}\) is 1-dim'l reflected BM.

\((\hat{Q}^n, \hat{I}^n) \Rightarrow (\hat{Q}, \hat{I}), \hat{I} = \Phi(\hat{X})\). Local time of \(\hat{Q}\).