Consider the space $C^d := C([0, \infty), \mathbb{R}^d) := \{ f : [0, \infty) \to \mathbb{R}^d \mid f \text{ is continuous } \}$. Then, we can endow C^d with the metric:

$$d(x, y) = \sum_{n=1}^{\infty} 2^{-n} (||x - y||_n \wedge 1)$$

(1.1)

where $||x||_n = \sup_{t \in [0, n]} |x(t)|$. We can prove that (C^d, d) is a Polish space (metric, separable and complete).

In a similar way, consider $D^d := D([0, \infty), \mathbb{R}^d)$ as the space of functions $f : [0, \infty) \to \mathbb{R}^d$ such that f is right-continuous with left limits. Then, we endow this set with the metric m_{J_1}, which induces the Skorohod-J_1 topology.

Let (Ω, \mathcal{F}, P) be a probability space and $\{X^n\}_{n \geq 1}$ a sequence of stochastic processes with paths in D^d. We consider D^d as the σ-algebra on D^d associated with the J_1-topology. This is the smallest σ-algebra containing all open sets for the J_1-topology.

The fact that X^n is measurable as a map to $D^d ((X^n)^{-1}(A) := \{ w \in \Omega \mid X^n(\omega) \in A \} \in \mathcal{F}$ for all $A \in D^d)$ is equivalent to: $\forall t > 0 \ X^n_t : \Omega \to \mathbb{R}^d$ is measurable and $t \mapsto X^n_t(\omega)$ is in D^d for each $\omega \in \Omega$.

Definition 1.1 (Law of X^n) Define $\pi_n(A) := P((X^n)^{-1}(A))$ for $A \in D^d$. Then, π_n is a probability measure on (D^d, D^d) and it is called the law or distribution of X^n. In the same way, we consider $\pi(A) = P(X^{-1}(A))$ for all $A \in D^d$.

1.1 Convergence in Distribution of $\{X^n\}$ to X

Consider $\{X^n\}_{n \geq 1}$ and X processes with paths in D^d.

Definition 1.2 We will say that $\{X^n\}$ converges in distribution or in law to X (denoted $X^n \Rightarrow X$) if for the corresponding laws $\{\pi_n\}_{n \geq 1}$ and π, we have that:

$$\pi_n \rightharpoonup \pi \quad \text{as } n \to \infty,$$

(1.2)

which means that: $\forall f : D^d \to \mathbb{R}$ continuous and bounded, we have that $\int_{D^d} f d\pi_n \to \int_{D^d} f d\pi$ as $n \to \infty$.

The set of probability measures on D^d (or C^d) with the topology of weak convergence is a Polish space. In other words, there exists a metric on the space that makes it separable, complete and convergence in the metric is weak convergence.

We have other types of convergence for stochastic processes.
Definition 1.3 For \(d \)-dimensional stochastic processes \(\{X^n\}_{n \geq 1} \) and \(X \) defined on \((\Omega, \mathcal{F}, P)\), we will say that \(X^n \) converges to \(X \) almost surely if:

\[
X^n(\omega) \rightarrow X(\omega) \text{ in } D^d \text{ as } n \rightarrow \infty \tag{1.3}
\]

for \(P \)-a.e. \(\omega \in \Omega \). Also, we will say that \(X^n \) converges in probability to \(X \) if for each \(\epsilon > 0 \) we have that:

\[
P(m_{J_1}(X^n, X) > \epsilon) \rightarrow 0 \tag{1.4}
\]
as \(n \rightarrow \infty \).

1.2 Criteria for Weak Convergence

Definition 1.4 A set \(B \) of probability measures on \((D^d, D^d)\) is (weakly) relatively compact if each sequence \(\{\pi_n\}_{n=1}^\infty \) in \(B \) has a weakly convergent subsequence with limit that is a probability measure on \((D^d, D^d)\).

Definition 1.5 A set \(B \) of probability measures on \((D^d, D^d)\) is tight if \(\forall \epsilon > 0 \) there is a compact set \(A \) in \(D^d \) such that:

\[
\pi(A) > 1 - \epsilon \quad \forall \pi \in B. \tag{1.5}
\]

For a sequence of real random variables \(\{X^n\}_{n \geq 1} \), their laws will be tight if \(\forall \epsilon > 0, \exists K_\epsilon > 0 \) such that:

\[
P(|X^n| \leq K_\epsilon) > 1 - \epsilon \tag{1.6}
\]
for all \(n \geq 1 \).

The next theorem relates the previous concepts.

Theorem 1.6 (Prohorov’s Theorem) A set of probability measures \(B \) in \((D^d, D^d)\) is (weakly) relatively compact if and only if it is tight.

The next theorem gives us a very useful method to prove convergence.

Theorem 1.7 Suppose \(\{\pi_n\}_{n=1}^\infty \) is a tight sequence of probability measures on \((D^d, D^d)\). Assume each weakly convergent subsequence of \(\{\pi_n\}_{n=1}^\infty \) has limit \(\pi \). Then, \(\{\pi_n\}_{n=1}^\infty \) converges weakly to \(\pi \).

Proof We argue by contradiction. Suppose \(\{\pi_n\}_{n=1}^\infty \) does not converges weakly to \(\pi \). Then, there must be some \(\epsilon > 0 \) and some subsequence \(\{\pi_{n_k}\}_{k=1}^\infty \) such that:

\[
d(\pi_{n_k}, \pi) > \epsilon \quad \forall k \geq 1 \tag{1.7}
\]

where \(d \) is the metric for the space of probability measures. Notice that \(\{\pi_{n_k}\}_{k=1}^\infty \) is tight, and therefore, has a convergent subsequence \(\{\pi_{n_k}\}_{k=1}^\infty \). But, this limit should be \(\pi \), which contradicts (1.7).
We now look at some criteria for tightness in \mathbb{D}^d.

Theorem 1.8 A sequence of probability measures $\{\pi_n\}_{n=1}^\infty$ on $(\mathbb{D}^d, \mathbb{D}^d)$ is tight if and only if $\forall T > 0, \epsilon > 0$ there exists $K_\epsilon, \delta_\epsilon > 0$ such that:

(i) $\limsup_{n \to \infty} \pi_n(x \in \mathbb{D}^d : ||x||_T \geq K_\epsilon) < \epsilon$

(ii) $\limsup_{n \to \infty} \pi_n(x \in \mathbb{D}^d : w'(x, \delta_\epsilon, T) \geq \epsilon) < \epsilon$

where w' is the **modified modulus of continuity**, defined as:

$$w'(x, \delta, T) = \inf_{\{t_i\}} \max_{i=1,...,m} \sup_{t \in [t_{i-1}, t_i)} |x(s) - x(t)|$$

where $\{t_i\}$ ranges over all partitions of the form $t_0 = 0 < t_1 < \ldots < t_m = T$ where $\min(t_i - t_{i-1}) > \delta$ for $i = 1, \ldots, m$.

Theorem 1.9 (Skorohod’s Representation Theorem) Suppose $\{\pi_n\}_{n=1}^\infty$ and π are probability measures on $(\mathbb{D}^d, \mathbb{D}^d)$ such that $\pi_n \rightharpoonup \pi$. Then, there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which stochastic processes $\{X_n\}_{n=1}^\infty$ and X are defined in such a way that X^n has law π_n for each $n \geq 1$, X has law π, and $X^n \rightharpoonup X$ almost surely as $n \to \infty$.

Theorem 1.10 (Aldous) Let $\{X^n\}_{n=1}^\infty$ be a sequence of stochastic processes with paths in \mathbb{D}^d. Then, the associated probability measures $\{\pi_n\}_{n=1}^\infty$ are tight if $\forall T > 0$:

(i) $\lim_{K \to \infty} \limsup_{n \to \infty} \mathbb{P}(||X^n||_T \geq K) = 0$ (compact containment).

(ii) $\forall \epsilon, \eta > 0$ there exists $\delta_{\epsilon, \eta}, n_{\epsilon, \eta} > 0$ such that for all $0 < \delta \leq \delta_{\epsilon, \eta}$ and $n \geq n_{\epsilon, \eta}$,

$$\sup_{\tau_n \in \mathcal{T}^n[0,T]} \mathbb{P}(|X^n(\tau_n + \delta) - X^n(\tau_n)| \geq \epsilon) \leq \eta$$

where $\mathcal{T}^n[0,T]$ are all the finite-valued X^n-stopping times, i.e., an element of this set is a stopping time that only takes values in a finite set.

The next theorem includes the case where X has paths in \mathbb{C}^d.

Theorem 1.11 Let $\{X^n\}_{n=1}^\infty$ be processes with paths in \mathbb{D}^d. The associated probability measures $\{\pi_n\}_{n=1}^\infty$ will be tight and any limit point will be concentrated on \mathbb{C}^d if and only if $\forall T, \epsilon > 0$:

(i) $\lim_{K \to \infty} \limsup_{n \to \infty} \mathbb{P}(||X^n||_T \geq K) = 0$ (compact containment).

(ii) $\lim_{\delta \to 0} \limsup_{n \to \infty} \mathbb{P}(w(X^n, \delta, T) \geq \epsilon) = 0$.

where w is the \textbf{modulus of continuity}:

\[
 w(x, \delta, T) = \sup_{s, t \in [0, T], |s - t| < \delta} |x(s) - x(t)|
\]

(1.10)