Consider a stock price process $S = (S_0, S_1, S_2)$ defined on $\Omega = \{\omega_1, \omega_2, \ldots, \omega_6\}$ by

\[
\begin{align*}
S(\omega_1) &= (8, 16, 32) \\
S(\omega_2) &= (8, 16, 28) \\
S(\omega_3) &= (8, 16, 10) \\
S(\omega_4) &= (8, 4, 10) \\
S(\omega_5) &= (8, 4, 4) \\
S(\omega_6) &= (8, 4, 2)
\end{align*}
\]

Note, this is not a binomial model. However, you can draw a tree to describe the possible paths followed by the stock price process. You should do this and then answer the following questions.

(a) For $t = 0, 1, 2$, let $\mathcal{F}_t = \sigma\{S_s : 0 \leq s \leq t\}$, the σ-algebra generated by the stock price process up to time t. The entire collection of σ-algebras $\{\mathcal{F}_t, t = 0, 1, 2\}$ is called a filtration. Each \mathcal{F}_t is generated by a partition \mathcal{P}_t of Ω. Determine what \mathcal{P}_t is for $t = 0, 1, 2$. Write down the list of sets that constitute \mathcal{F}_t for $t = 0, 1$.

(b) Let P be a probability measure defined on (Ω, \mathcal{F}_2) where $P(\{\omega_1\}) = 0.5$, $P(\{\omega_2\}) = 0.2$, $P(\{\omega_3\}) = 0.1$, $P(\{\omega_4\}) = 0.1$, $P(\{\omega_5\}) = 0.05$, $P(\{\omega_6\}) = 0.05$. Let E denote expectation under P. Determine the conditional expectations:

\[
E[S_2|\mathcal{F}_1], \\
E[S_1|\mathcal{F}_0].
\]

(c) Let $\tau_1 = \min\{t \geq 0 : S_t \geq 15\} \wedge 2$ (here the minimum of the empty set is $+\infty$). Write out what τ_1 is as a function on Ω. Prove that τ_1 is a stopping time.

(d) Let $\tau_2 = \max\{t \geq 0 : S_t > 4\}$ (here the maximum of the empty set is defined to be zero). Write out what τ_2 is as a function on Ω. Show that τ_2 is not a stopping time.