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PERSPECTIVE
MQN                                     SPN

Sufficient conditions for e.g., parallel server system,

HL   stability and diffusion packet switch
approximations                                

Non- e.g., LIFO, Processor Sharing e.g., Internet congestion    

HL       (single station,                                control / bandwidth sharing   
PS: network stability)                       model
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Answers for HL MQN

STABILITY
– Subcritical fluid models

PERFORMANCE ANALYSIS (in heavy traffic)
– Reflecting diffusions and state space collapse via   

critical fluid models



4

Scaling

Fluid scale:

Diffusion scale:

Performance processes do not require centering 
for the heavy traffic diffusion approximation. 
Diffusion scale is obtained by considering large 
times in fluid scale.

( ) ( ) /rW t W rt r=

2ˆ ( ) ( ) / ( )r rW t W r t r W rt= =
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Assumptions

HL: jobs within a buffer are stored in the order in 
which they arrived and service is always given to 
the job at the head-of-the-line. Also, the discipline 
is non-idling.
Primitive arrival, service and routing processes 
are assumed to satisfy functional central limit 
theorems.
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OPEN MULTICLASS HL NETWORK (SETUP)
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SIMPLE  MULTICLASS  EXAMPLE
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Multiclass FIFO Station
 

•Renewal arrivals to class i at rate 

•i.i.d. service times for class i, mean

•Service discipline: FIFO across all classes

iλ

im

1λ

λI

1m

mI



9

Performance Processes
 

•Queuelength for class i:
•Workload:

•Idletime:
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Stability

•Traffic Intensity

•Stability iff
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Stability

•Traffic Intensity

•Stability iff
•Heavy traffic                   
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Simulation of a Multiclass FIFO queue
(Poisson arrivals, exponential service times)

 

1 0.05λ =

2 0.3λ =

3 0.775λ =

1 1m =

2 0.5m =

3 1m =

1 0.975ρ =
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Simulation of a Multiclass FIFO queue
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Stability

•Traffic Intensity

•Stability iff
•Heavy traffic                (assume                for simplicity)
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Heavy Traffic Diffusion Approximation

Theorem (Whitt ‘71)
where        is a one-dimensional reflecting Brownian 
motion with local time      and                    (state 
space collapse).
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OPEN  MULTICLASS  

HL  NETWORK

(CONJECTURES)    



17

 

Open Multiclass HL Queueing Network

First order parameters
m

α Pλ

Pλ α λ′= + ,  1,...,k i i
i k

m kρ λ
∈

= =∑ K
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Natural Conjectures

Stability: Network is stable provided

Heavy traffic diffusion approximation: 
If                                      then                    
where                     for some IxK lifting matrix       
(that depends on the HL service discipline), and            

is a reflecting Brownian motion 
(RBM) in the K-dimensional orthant. 

1 for each  1, ,k kρ < = … K

1,  1, , ,k kρ ≈ = … K * * *ˆˆ ˆ( , , ) ( , , )r r rW Y Q W Y Q≈
Δ

** *YXW R= +

* *Q W= Δ
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HISTORY    
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Affirmative Answers
(Refs. are for diffusion approximations through early 1990s)

SINGLE CLASS (FIFO):
– Single station: Borovkov (‘67), Iglehart-Whitt (‘70)
– Acyclic network: Iglehart-Whitt (‘70), Tandem queue: Harrison (‘78)
– Network: Reiman (‘84), Chen-Mandelbaum (‘91)    

MULTICLASS:
– Single station, priorities: Whitt (‘71), Harrison (‘73)                       
– Network, priorities: Johnson (‘83, SP),  Peterson (‘91, feedforward) 
– Single station, feedback, round robin & FIFO: Reiman (‘88), Dai-

Kurtz (‘95)
Rely on continuous mapping construction of RBM and do 

not cover multiclass networks with general feedback.
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Counterexamples
(two-stations, deterministic routing)

STABILITY
– Kumar and Seidman (‘90): dynamic policy. 
– Lu and Kumar (‘91): static priorities, deterministic interarrival and 

service times.
– Rybko and Stolyar (‘92): static priorities, exponential interarrival and 

service times. (See also Botvitch and Zamyatin (’92))
– Seidman (‘94): FIFO, deterministic interarrival and service times.
– Bramson ('94): FIFO, exponential interarrival and service times. 

DIFFUSION APPROXIMATION
– Dai-Wang (‘93): FIFO, exponential interarrival and service times.



22

Poisson arrivals (rate      ) 
i.i.d. exponential service times with class means
Traffic intensities

Proposed workload approximation:

Dai-Wang ‘93 FIFO Counterexample

α
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OPEN  MULTICLASS  

HL  NETWORK     

(SETUP)                              



24

 

Open Multiclass HL Queueing Network
V

E ΦA D
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Open Multiclass HL Queueing Network

Network Structure
K single server stations
I customer classes (buffers)
C constituency matrix (KxI )

(             if class i served at station k) 
All buffers have infinite capacity
HL: FIFO service within each class and non-idling (e.g., 
FIFO, static priorities, HLPS)

1kiC =
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Open Multiclass HL Queueing Network

Stochastic Primitives (E,V, )
# of exogenous class i arrivals in [0,t]
cumulative service time for first n jobs processed 

from class i
(              # class i jobs completed after t units of service is 
given to class i)

# of the first n departures from class j  that are 
routed next to class i

( )iV n =

( )j

i n =Φ

Φ

( )iE t =

( )iS t =
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Open Multiclass HL Network
Performance Processes and Model Equations
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Open Multiclass HL Network
Performance Processes and Model Equations

+ additional equations depending on service discipline, e.g., FIFO:

1( ) ( )tY t CT t= −(0)( ) ( ) ( )Q t A t tQ D= + −

( )) ( )(( )A t E t D t= +Φ (( )) ( )D TSt t=

(( ) (( ) ( )) 10)W t A t tCV Q t Y= − ++
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STABILITY  AND  FLUID  MODELS    
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Fluid Model for HL Network
(formal FLLN approximation)

1
m

Pα A D
K

1( ) ( ),        ' ( ),       ( ) ( )t P M diA t D ag mt D t T tMα −= + = =

total time allocated to class  by ( ) m  = ti eiT t i t



31

Fluid Model for HL Network
(formal FLLN approximation)
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Fluid Model for HL Network
(formal FLLN approximation)

1
m

Pα A D
K
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Stability via Fluid Models

Definition: A fluid model is (uniformly) stable if there is  
such that for all fluid model solutions 

0 0t >

0for all | ( ) | .) 0 0 ( t t QQ t ≥=
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Stability via Fluid Models

Definition: A fluid model is (uniformly) stable if there is  
such that for all fluid model solutions 

Theorem* (Dai ‘95): Fix an open multiclass HL queueing
network and consider an associated fluid model. Under mild 
conditions**, if the fluid model is stable, then a Markov 
process describing the multiclass network is positive Harris 
recurrent.
* See also Stolyar (’95)
**includes unboundedness and “spread out” assumptions on interarrival times

0 0t >

0for all | ( ) | .) 0 0 ( t t QQ t ≥=
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Examples
Since 1995, many authors have used the fluid model 
approach to obtain sufficient conditions for stability of 
open multiclass HL networks (e.g., Bertsimas, Bramson, 
H. Chen, Dai, Foss, Hasenbein, Meyn, Stolyar, Weiss, ...)

Bramson ‘96: FIFO Kelly-type and HLPPS networks  
(Kelly type: mean service times are station dependent)
– used subcritical fluid models to establish stability 

when               for all k. 1kρ <
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Examples
Since 1995, many authors have used the fluid model 
approach to obtain sufficient conditions for stability of 
open multiclass HL networks (e.g., Bertsimas, Bramson, 
H. Chen, Dai, Foss, Hasenbein, Meyn, Stolyar, Weiss, ...)

Bramson ‘96: FIFO Kelly-type and HLPPS networks  
(Kelly type: mean service times are station dependent)
– used subcritical fluid models to establish stability 

when               for all  k.
– established asymptotic behavior (as             ) of critical 

fluid models (              for all k) --- uniform 
convergence to invariant manifold.  

1kρ <

t →∞
1kρ =
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SEMIMARTINGALE  REFLECTING 
BROWNIAN  MOTIONS  

(SRBMs)
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SRBM  DATA

State space:
Brownian statistics: drift    ,  covariance matrix
Reflection matrix:

1w

3w 1v
2v

3v
2w

+
KR

θ Γ
( )1,...,R v v= K
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SRBM  DEFINITION  (w/starting point     )

A continuous K-dimensional process such that 
(i)
(ii) has paths in
(iii) for k=1,...,K, is continuous, 
non-decreasing, and it can increase only when 
(iv) is a             BM  s.t.

is a martingale relative to the
filtration generated by 

+
KR

kY(0) 0,kY =

0kW =

W RX Y= +

X

W

W

0(0) ,X x=

0x

{ , 0}( )t tX tθ− ≥
( , )θ Γ

( ,, )W X Y
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Necessary Condition for Existence

Defn:      is completely-S iff for each principal 
submatrix of      there isR

R
R 0 : 0y Ry> >

1w

3w 1v
2v

3v
2w

( )1,...,R v v= K
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Existence and Uniqueness in Law

Theorem (Reiman-W ‘88, Taylor-W ‘93)
There is an SRBM        starting from each point        
in          iff is completely-S. In this case, each 
such SRBM is unique in law and these laws define 
a continuous strong Markov process. 

W 0x

+
KR R
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Oscillation Inequality
Assume that R is completely-S.  There is a constant C>0 such 
that whenever                                                and are  
r.c.l.l. satisfying
(i)
(ii) lives in
(iii) for k=1,...,K, is continuous, non-decreasing, 

and can increase only when                 ,
Then

Cts case: Bernard-El Kharroubi ’91, discts case: W ‘98

1 20,   0 ,t tδ > ≤ < < ∞ ,,w x y

1 2( ) ( ) for ( ) [ , ] R t t tw t tt yx= + ∈
w +

KR

1( ) 0,ky t ≥ ky

kw δ<

1 2 1 2 1 2( ,[ , ]) ( ,[ , ]) ( ( ,[ , ]) )Osc t t Osc t t C Osc t ty xw δ+ ≤ +
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Analysis of multidimensional SRBMs

Sufficient conditions for positive recurrence
Dupuis-W ‘94, Chen ‘96, Budhiraja-Dupuis ‘99, El Kharroubi-Ben Tahar-
Yaacoubi ‘00
Stationary distribution
– Characterization: Harrison-W ‘87, Dai-Harrison ‘92, Dai-Kurtz ‘98
– Analytic solutions -two-dimensions: Foddy ‘84, Trefethen-W ’86,  

Harrison ‘06
-product form: Harrison-W ‘87

– Numerical methods: Dai-Harrison ‘91,’92, Shen-Chen-Dai-Dai ‘02,
Schwerer ‘01

Large deviations
Majewski ‘98,’00, Avram-Dai-Hasenbein ’01, Dupuis-Ramanan ’02, 
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RBMs in piecewise smooth domains
Motivation
– capacitated queues (Dai-Dai `99)
– single station-polling (Coffman-Puhalskii-Reiman `95)
– dynamic HLPS (Ramanan-Reiman `03)
– bandwidth sharing (Kelly-W ’04)
– Input queued packet switch (Shah-Wischik `06) 

Sufficient conditions for existence and uniqueness
– Dupuis-Ishii `93 (piecewise smooth domains, reflected diffusions, strong solutions)
– Dai-W `95 (polyhedral domains, SRBMs, weak solutions)
– Dupuis-Ramanan `99, Ramanan `06  (strong solutions, extended Skorokhod problem)
– Mazumdar et al.,  (variable reflection directions)

Invariance Principle (oscillation inequality)
– Kang-W `06 (piecewise smooth domains)
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HEAVY  TRAFFIC  LIMIT THEOREM  
VIA STATE SPACE COLLAPSE
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Heavily Loaded Multiclass HL Network
Stochastic Model

Start system empty
Assume 

+ additional equations depending on service discipline, e.g., FIFO:

ΦE A D
K

V
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State Space Collapse
Definition:  Multiplicative state space collapse (MSSC) 
holds if there is a IxK matrix       such that for  each            :    

in probability as                . 

Δ 0T ≥

r →∞

|| || 0
max(||

ˆ ˆ( ) ( )
ˆ ( ) || ,1)

T

T

r r

r

Q W
W
Δ−

→
i i
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State Space Collapse
Definition:  Multiplicative state space collapse (MSSC) 
holds if there is a IxK matrix       such that for  each            :     

in probability as                . 

Theorem (Bramson ‘98)  “MSSC holds if critical fluid model 
solutions converge uniformly to the invariant manifold”. 
In particular, MSSC holds for FIFO Kelly type and HLPPS
networks.

Δ 0T ≥

r →∞

|| || 0
max(||

ˆ ˆ( ) ( )
ˆ ( ) || ,1)

T

T

r r

r

Q W
W
Δ−

→
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Sufficient Conditions for HT Limit Theorem

Theorem (W ‘98)  Assume standard heavy traffic 
assumptions and
(i) multiplicative state space collapse,
(ii) the reflection matrix  R  is completely-S.
Then
where W* is an SRBM with pushing process Y* and  
Q* = W*.

Examples: FIFO Kelly type and HLPPS networks; FBFS, LBFS reentrant lines; 
some static priority networks (see e.g., Bramson ‘98, W ‘98, Bramson-Dai ‘01)

* * *ˆˆ ˆ( , , ) ( , , )r r rW Y Q W Y Q⇒

Δ
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Dai-Wang-Wang ‘92 example
A multiclass FIFO 
network of Kelly type

Renewal arrivals (rate    ), i.i.d. service times for each class
Assume
Traffic intensities 

Reflection matrix for SRBM approximation
to workload process

No continuous mapping constr. for SRBM  

α

2 61
5 5

2 41
3 5

2 8 1
9 5

R

⎛ ⎞−⎜ ⎟
⎜ ⎟
⎜ ⎟= − Λ⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

1 2 3 4 5 6m m m m m m m= = = = = =

1 2 3 2 mρ ρ ρ α= = =

2 31
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FURTHER DEVELOPMENTS
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Some Related Work on Diffusion Approximations for   
Stochastic Processing Networks

HT limits that are not SRBMs (& have no state space collapse) 
– Single station-polling: Coffman-Puhalskii-Reiman ‘95
– Dynamic HLPS: Ramanan and Reiman ‘03

SRBMs in piecewise smooth (non-polyhedral domains): 
- conjectured to arise from Internet congestion control and input queued  

packet switch (Kelly-W ’04, Shah-Wischik ’06) 
Non-HL service disciplines

(Markovian state descriptor is typically infinite dimensional)
– LIFO preemptive resume: Single station: Limic ‘00, ‘01
– Processor sharing:  Single station (Gromoll-Puha-W ‘01, Puha-W ‘03, 

Gromoll ‘03); network (stability: Bramson ‘04)
– EDF: Single station (Doytchinov-Lehoczky-Shreve ‘01), acyclic network  

(Kruk-Lehoczky-Shreve-Yeung ‘03), network (stability: Bramson ‘01)


