
1

Control of Stochastic Processing Networks:   
Some Theory and Examples                   

Ruth J. Williams
University of California, San Diego

http://math.ucsd.edu/~williams

 



2

Stochastic Processing Networks

 

I buffers 
(classes)

K servers      
(resources)

 J activities

An activity consumes from certain classes, 
produces for certain (possibly different) classes, 
and uses certain servers.
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Stochastic Processing Networks

 
 

 
 

 
 

 
 

SPN Activities are Very General 

 
 

 
 

Queueing network

Flexible servers,    
alternate routing

Simultaneous actions



4

PERSPECTIVE
MQN                                     SPN

Sufficient conditions for e.g., parallel server system,

HL   stability and diffusion packet switch
approximations                                

Non- e.g., LIFO, Processor Sharing e.g., Internet congestion    

HL       (single station,                                control / bandwidth sharing   
PS: network stability)                       model
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BROWNIAN MODEL APPROACH TO          
DYNAMIC CONTROL OF SPNs

1. Formulate stochastic network model & associated control problem
2. Define heavy traffic (alternate routing) 
3. Formal diffusion approximation: BCP (Brownian control problem) 
4. Reduce to EWF (equivalent workload formulation)
5. Solve the BCP (or EWF)
6. Interpret the solution of the BCP
7. Analyze the performance of this policy & prove asymptotic optimality 
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BROWNIAN MODEL APPROACH TO          
DYNAMIC CONTROL OF SPNs

1. Formulate stochastic network model & associated control problem
2. Define heavy traffic (alternate routing) 
3. Formal diffusion approximation: BCP (Brownian control problem) 
4. Reduce to EWF (equivalent workload formulation)
5. Solve the BCP (or EWF)
6. Interpret the solution of the BCP
7. Analyze the performance of this policy & prove asymptotic optimality

OVERALL APPROACH (ASSUMING HL SERVICE): Harrison ‘88, 
Laws ‘92, Kelly-Laws ‘93, Harrison-Van Mieghem ‘97, Harrison ‘00
(More general notion of heavy traffic: Harrison ‘03: A broader view of Brownian 
networks, Harrison-W ’05, ‘06: workload reduction; NOT discussed here)
HL: head-of-the-line, but not necessarily non-idling
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Stolyar ’04, Mandelbaum-Stolyar ‘04, Ata-Kumar ‘05 (feedback)
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STOCHASTIC PROCESSING 
NETWORK MODEL
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External arrival rate vector
= average rate of exogenous arrivals to class i

Input-output matrix
= average amount of class i  material consumed per unit of 

activity j
(If                                 is the amount of class i material produced 
per unit of activity j ) 

Capacity consumption matrix
= average amount of server k’s capacity consumed per unit of

activity j

First Order Data (average rates)

iα

ijR

0, thenij ijR R<

kjA
0A ≥

R

0  ( 0)α α≥ ≠
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EXAMPLES
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Open Multiclass Queueing Network
m

α P

1( )           ( ')
1    ( )     kj

M diag m R I P M
A iff buffer activity j is served at k

−= = −
=
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Parallel Server System  
 

1m 2m 3m
4m

1α 3α2α

1
1

1 1
2 3

1
4

0 0 0
1 1 0 0

0 0                     
0 0 1 1

0 0 0

m
R m m A

m

−

− −

−

⎡ ⎤
⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦
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SPN with Control of Allocations to Activities
(Harrison ‘00-implicitly HL)

Queuelength process

Idletime process  

Control
total number of units of activity j used up to time t 

Relationship to first order data
( ( ) / , ( ) / ) ( ( ), ( )) ,

( ) , ( ) , 0.

E r r F r r R as r

where t t R t Rt t

α

α α

⇒ →∞

= = ≥

i i i i

1
(0) ( )( () ( ))j

j
jQ E t T tt FQ

=

= + −∑
J

)( ()I t t tAT= −1

( )jT t =
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FLUID MODEL AND 
HEAVY TRAFFIC
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Fluid Model

where 

(0)( ( ))Q tt TtQ Rα= + −

)( ()I t t tAT= −1

( ) 0 for all iQ t i≥

( ) is continuous and non-decreasing
(0) 0

k

k

I
I =

i

( ) is non-decreasing 

(0) 0
j

j

T

T =

i
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Heavy traffic (HT): The following two conditions hold:
(i) there is a unique fluid control        under which the fluid 
model is balanced (                                     ),
(ii) under        the fluid model incurs no idleness (          )

Heavy Traffic 

(0) ( ) for all Q t tQ=
*T

*T ( ) 0 I =i
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Heavy traffic (HT): The following two conditions hold:
(i) there is a unique fluid control        under which the fluid 
model is balanced (                                     ),
(ii) under        the fluid model incurs no idleness (          )

Then                                 is the unique soln of the linear program:

Heavy Traffic 

(0) ( ) for all Q t tQ=
*T

*T ( ) 0 I =i

*(1),  1x T ρ= =

min   s.t.  , ,   0          (L )  PR Ax x xρ ρα= ≤ ≥1
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Heavy traffic (HT): The following two conditions hold:
(i) there is a unique fluid control        under which the fluid 
model is balanced (                                     ),
(ii) under        the fluid model incurs no idleness (          )

Then                                 is the unique soln of the linear program:

Equivalent notion of heavy traffic (Harrison ‘00):
There is a unique optimal solution                   of the linear 
program and this unique solution satisfies 

Heavy Traffic 

* *( , )xρ

(0) ( ) for all Q t tQ=
*T

*T ( ) 0 I =i

* * =1Ax ρ=1,

*(1),  1x T ρ= =

min   s.t.  , ,   0          (L )  PR Ax x xρ ρα= ≤ ≥1
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Heavy traffic (HT): The following two conditions hold:
(i) there is a unique fluid control        under which the fluid 
model is balanced (                                     ),
(ii) under        the fluid model incurs no idleness (          )

Then                                 is the unique soln of the linear program:

Equivalent notion of heavy traffic (Harrison ‘00):
There is a unique optimal solution                   of the linear 
program and this unique solution satisfies 

Basic activities:  j such that               B =number of basic activities

Heavy Traffic 

* *( , )xρ

(0) ( ) for all Q t tQ=
*T

*T ( ) 0 I =i

* * =1Ax ρ=1,

*(1),  1x T ρ= =

* 0jx >

min   s.t.  , ,   0          (L )  PR Ax x xρ ρα= ≤ ≥1
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EXAMPLES
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Open Multiclass HL Queueing Network
m

α P

1( )           ( ')
'            

Heavy traffic
 

  
 

:

M diag m R I P M
P AMλ α λ ρ λ

ρ

−= = −
= + =

=1  
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Parallel Server System  
 

1m 2m 3m
4m

1α 3α2α

1 2 30.2,  1.2,  0.35α α α= = = 1 2 3 40.5,  1,  1,  2m m m m= = = =
* * * *
1 2 3 40.1,  0.9,  0.3,  0.7x x x x= = = =
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BROWNIAN CONTROL            
PROBLEM 
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SPN Control Problem
(with rescaling in heavy traffic)

Assume HT holds henceforth
Define centered, rescaled processes

Queuelength process

Idletime process  

Cost functional

( ) ( )*,

1

ˆ ˆ ˆ(0) ˆ( ) ( ))( ) (ˆ r r

j

r r rj r
jT t xQ t Q E t F R Rrt Y tα

=

= + − + − +∑
J

ˆ )ˆ ( ()r rAYI t t=

2 2

* 2 2 2

2 2 2 2

2

ˆ ˆ( ) ( ) /                        ( )
ˆ ( ) ( ( )) /          

ˆ ˆ( ) ( ( ) ) /           ( ) (

(

(

( )

) )

/

) ) /

/

(

r r

r r

r r

Y t x r t T

E t E r t r t

r t r

Q t Q r t r I t I

r F t F r t Rr t r

r t

T t T r t r

r

α

= =

= − =

= − = −

0
ˆ( ) ( )rr t rhJ e Q t dT tγ∞ −⎡ ⎤= ⎢ ⎥⎣ ⎦∫ iE
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Brownian Control Problem

where         is a Brownian motion,  

(0) () ( ))( YRt tXQ tQ= + +

) )( (At tI Y=

0
min  ( )

Y

the Q t dtγ∞ −⎡ ⎤
⎢ ⎥⎣ ⎦∫ iE

X
( ) 0 for all iQ t i≥

( ) is continuous and non-decreasing,  (0) 0,  for all k kI I k≥i
is non-increasing and  for a( ) ll non-b(0) 0 asic j jY Y j≤i

does not anticipate the future of   XY
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Workload
(Harrison and Van Mieghem ‘97)

Space of reversible queuelength displacements: 

Let  L be the dimension of       .
Let       be  an  LxI matrix whose rows are a basis for      .
Harrison and Van Mieghem reduce the BCP to an equivalent 
formulation in which      is replaced by a “workload” process:

Note: Harrison ‘00 proposes a way to choose      via dual LP. 

{ : 0 , 0}NR Ay y y≡ = =R

Γ
⊥R

(

( ) ( )

        (0) )

        (0

( )

) () ) (( )N

Y tX t

X

W t Q

W R

W GI t Y tH

t

t

=

=

Γ

Γ

+

Γ+ +

+Γ= −

⊥R

Γ

Q
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Workload Dimension
(Bramson-W ‘03)

Theorem Suppose that each column of  A contains at most 
one strictly positive entry.  Then, L = I + K - B

Examples: 
Multiclass Queueing Networks:  L = K (total workload)
Parallel server systems: formula applies
(special case of  L=1 proved by Harrison-Lopez ‘99)

Notes: There is a more general version of the formula without the 
assumption on A  in Bramson-W ‘03 and also sufficient conditions for    , 
G and H to have all entries non-negative.

Γ
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BROWNIAN MODEL APPROACH TO          
DYNAMIC CONTROL OF SPNs

1. Formulate stochastic network model & associated control problem
2. Define heavy traffic (alternate routing) 
3. Formal diffusion approximation: BCP (Brownian control problem) 
4. Reduce to EWF (equivalent workload formulation)
5. Solve the BCP (or EWF)
6. Interpret the solution of the BCP
7. Analyze the performance of this policy & prove asymptotic optimality 
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PARALLEL SERVER SYSTEM
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Theorem (Harrison-Lopez ‘99) The following are equivalent.
(i) the workload is one-dimensional,
(ii) B=I+K-1, 
(iii) there is a unique solution of the dual to (LP),
(iv) all servers communicate via basic activities.

In fact, under any of these conditions, the server-buffer graph with basic
activities as edges is a tree. (W ‘00; Squillante-Xia-Yao-Zhang ‘00) 

COMPLETE RESOURCE POOLING
α1 α I

m 1 m J

I1

1 K
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Solution of the BCP under complete resource pooling  
(Harrison-Lopez ‘99)

Unique soln of (DP): 
One-dimensional workload process:

Holding cost:
Minimum workload:

Optimal queuelength and idletime:

( ) ( )* * *( ) ( ( *)) NX tW t Qy y Y tz utt I= = + −i ii i

( *, *)y z

) ( )*(Q th c W t≥i *min{ : , }* / 1,i i ic h y= = … I
*

*

* ( )
( )
( )

max{ : 0 }(
*

*
( )

)
V t

V t
X t

X
W t

s s
y

y t
= +

= ≤ ≤− i
i

* *a rg m in { : 1, , } ,/

* *
i ii h y

k

i

s e r v e s v ia b a s ic a c tiv i tyi

= = … I

* * * *
*

* * **
*

*
*

*( ) ( ) / , ( ) 0 *

/ , 0 *( ) ( ) ( ,) 0

i

k N

i

k

i

kI t V t I

Q t W t Q

t

y

z

t for i

for k k Y

i= = ≠

= = ≠ ≡
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How can one interpret the solution of the BCP?

Seek a policy that
(a) keeps the bulk of the work in a buffer i* with smallest 

ratio of holding cost to workload contribution,
(b) incurs idleness only when the system is nearly empty, 
(c) incurs the bulk of the idleness at a server k* that serves 

i* via a basic activity.
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Parallel Server System  
 

1 0.5m = 2 1m = 3 1m =
4 2m =

0.2 0.351.2

1 1h = 2 1h = 3 1h =

* *

* *

(0.25,0.5,1),  (0.5,0.5)
3,  2

y z
i k
= =

= =



34

Parallel Server System  

 

* *3,  2i k= =

21 3
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Parallel Server System  

 

* *3,  2i k= =

3 2

1

1

2

21 3 T
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Parallel Server System  

 

* *3,  2i k= =

3 2

1

1

2

21 3 T

Threshold policy: Server 2 is the root. Buffer 3 has 
lowest priority. Place threshold on transition activity. 
Servers give priority to transition activities below them 
in the tree, except suspend such an activity when the 
associated buffer is below threshold. Next priority goes 
to non-transition activities below server. Lowest priority 
goes to activities above server.
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Parallel Server System  
Simulation with dynamic priority discipline: 
server 1 gives priority to buffer 1, server 2 gives priority to buffer 2, except 
when queue 2 goes below threshold of size 10

Queuelengths for buffer 1 ---, buffer 2 ---, buffer 3 --- versus time                    
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Asymptotic optimality of tree based threshold policy

Assume complete resource pooling, thresholds of order log r, 
exponential moments and usual heavy traffic conditions.

Theorem (Bell-W ‘05)
If        denotes the threshold control in the rth system
then for any other sequence of control policies          we 
have

where 

,*rT
{ ,}rT

*

*

0

,*liminf ( ) lim ( )

( )

r rr r
r r

t

J J J

e Q t

T T

dthγ

→∞ →∞

∞ −

≥ =

⎡ ⎤= ⎢ ⎥⎣ ⎦∫ iE

0
ˆ( ) ( )rr t rhJ e Q t dT tγ∞ −⎡ ⎤= ⎢ ⎥⎣ ⎦∫ iE



39

Complete Resource Pooling: related work

Parallel server system (linear holding costs):
– Proof of asymptotic optimality of discrete review policy in 

special two server case:  Harrison ‘98
– Proof that continuous review threshold policy is 

asymptotically optimal: Bell-W.  ’05
Parallel server system (strictly convex holding costs):

– Stolyar ’04, Mandelbaum-Stolyar ‘04
General network (with feedback):

– Discrete review policy and proof of asymptotic optimality: 
Ata-Kumar ‘05.
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Open Problems

Control of HL SPNs
– Solve BCP or EWF 

(HJB equation: Budhiraja-Atar ‘06, 
Numerical Method: S. Kumar and Muthuraman ‘04)

– Interpretation of solution of BCP or EWF
– Proofs of asymptotic optimality 

Performance of HL SPNs
– Theory for limiting diffusions (e.g., for packet 

switch Kang-W ‘06, congestion control models 
Kang-Kelly-Lee-W ‘06)

Control and performance for non-HL SPNs


