1. Suppose $X_n \sim \text{Binomial}(n, p_n)$, and $\lim_{n \to \infty} np_n = \lambda > 0$. Show that $X_n \xrightarrow{d} \text{Poisson}(\lambda)$.

2. Suppose $X_n \sim \chi^2_n$ with n degrees of freedom. Find a_n and b_n such that
 \[\frac{X_n - a_n}{b_n} \xrightarrow{d} N(0, 1). \]

3. Let Y_1, \ldots, Y_n be i.i.d. samples from Uniform$[0, 1]$, and $Y_{(1)}, \ldots, Y_{(n)}$ be the order statistics. Show that $n(Y_{(1)} - Y_{(n)}) \xrightarrow{d} (U, V)$, where U and V are two independent exponential random variables.

4. Let X_1, \ldots, X_n be i.i.d. samples from Uniform$[-\theta, \theta]$, and $X_{(1)}, \ldots, X_{(n)}$ be order statistics. Show that the following three statistics are asymptotically consistent estimators of θ.
 (a) $X_{(n)}$;
 (b) $-X_{(1)}$;
 (c) $(X_{(n)} - X_{(1)})/2$.

5. A random variable X_n is said to follow a t-distribution with n degrees of freedom, if $X_n \sim \sqrt{n}Z/\sqrt{Z_1^2 + \ldots + Z_n^2}$, where Z, Z_1, \ldots, Z_n are i.i.d. from $N(0, 1)$. Show that $X_n \xrightarrow{d} N(0, 1)$.

6. Let X_1, \ldots, X_n be i.i.d. from density $f_{\lambda, a}(x) = \lambda e^{-\lambda(x-a)}$, when $x \geq a$, where $\lambda > 0$ and $a \in \mathbb{R}$ are unknown parameters. Find the MLE $(\hat{\lambda}_n, \hat{a}_n)$ of (λ, a), and show that $(\hat{\lambda}_n, \hat{a}_n) \xrightarrow{P} (\lambda, a)$.