Math 281A Homework 2 Solution

1. Let X_1, \ldots, X_n be i.i.d. from $N(0,1)$, show that \bar{X} and $(X_1 - \bar{X}, \ldots, X_n - \bar{X})$ are independent.

Solution: It’s easy to see that $(\bar{X}, X_1 - \bar{X}, \ldots, X_n - \bar{X})$ is multivariate normal, so showing the desired independence is equivalent as checking $\text{Cov}(\bar{X}, X_i - \bar{X}) = 0$, for $i = 1, 2, \ldots, n$. Now,

$$\text{Cov}(\bar{X}, X_i - \bar{X}) = \text{Cov}(\bar{X}, X_i) - \text{Var}(\bar{X}) = \frac{\text{Var}(X_i)}{n} - \text{Var}(\bar{X}) = \frac{1}{n} - \frac{1}{n} = 0.$$

2. Suppose that random vector (X,Y) has probability density function

$$\frac{1}{\pi} e^{-\frac{x^2+y^2}{2}} I(xy > 0).$$

Does (X,Y) possess a multivariate normal distribution? Find the marginal distributions.

Solution: No, the density function is only defined on two quadrants. Marginally, when $x > 0$,

$$f_X(x) = \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

and when $x < 0$,

$$f_X(x) = \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$$

and $f_X(0) = 0$.

3. Suppose T_n and S_n are sequences of estimators such that

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N_k(0, \Sigma), \text{ and } S_n \xrightarrow{P} \Sigma,$$

for a certain vector θ and a nonsingular matrix Σ. Show that

(a) S_n is nonsingular with probability tending to one;

Solution 1: First notice that $S_n \xrightarrow{P} \Sigma$ implies $|S_n| \xrightarrow{P} |\Sigma|$, so for any $\epsilon > 0$,

$$\mathbb{P}(|S_n| > |\Sigma| - \epsilon) \to 1.$$

Since $|\Sigma| > 0$, taking $\epsilon = |\Sigma|/2$ gives us

$$\mathbb{P}(|S_n| > |\Sigma|/2) \to 1,$$

which implies $\mathbb{P}(S_n \text{ is nonsingular}) \to 1$.

Solution 2: Denote $D_n = S_n - \Sigma$, and let $\bar{\sigma}(A)$ and $\bar{\sigma}(A)$ be the largest and smallest singular values of matrix A respectively. $S_n \xrightarrow{P} \Sigma$ gives us for any $\epsilon > 0$,

$$\mathbb{P}(\bar{\sigma}(D_n) < \epsilon) \to 1.$$

(1)

Since $S_n = D_n + \Sigma$, we have the following inequality derived from triangle inequality,

$$\bar{\sigma}(S_n) \geq \bar{\sigma}(\Sigma) - \bar{\sigma}(D_n).$$

Then, because Σ is nonsingular, $\bar{\sigma}(\Sigma) > 0$, we consider

$$\mathbb{P}(\bar{\sigma}(S_n) > \bar{\sigma}(\Sigma)/2) \geq \mathbb{P}(\bar{\sigma}(\Sigma) - \bar{\sigma}(D_n) > \bar{\sigma}(\Sigma)/2)$$

$$= \mathbb{P}(\bar{\sigma}(D_n) < \bar{\sigma}(\Sigma)/2) \to 1,$$

where the last step comes from (1). This implies

$$\mathbb{P}(S_n \text{ is nonsingular}) \to 1.$$
(b) \{ \theta : n(T_n - \theta)^\top S_n^{-1}(T_n - \theta) \leq \chi^2_{k, \alpha} \} is a confidence ellipsoid of asymptotic confidence level 1 - \alpha.

Solution: The set \{ \theta : n(T_n - \theta)^\top S_n^{-1}(T_n - \theta) \leq \chi^2_{k, \alpha} \} is only defined when \(S_n^{-1} \) exists, and from (a) we know that \(\mathbb{P}(S_n^{-1} \text{ exists}) \to 1 \). Now conditional on the event that \(S_n^{-1} \) exists, \(S_n \xrightarrow{P} \Sigma \) implies \(n(T_n - \theta)S_n^{-1}(T_n - \theta) \xrightarrow{P} 0 \), and \(\sqrt{n}(T_n - \theta) \xrightarrow{d} N_k(0, \Sigma) \) implies \(n(T_n - \theta)\Sigma^{-1}(T_n - \theta) \xrightarrow{d} \chi^2_k \). It follows from Slutsky’s theorem that

\[
\sqrt{n}(T_n - \theta)S_n^{-1}(T_n - \theta) \xrightarrow{d} \chi^2_k,
\]

which completes the proof.

4. Suppose that \(X_m \sim \text{Binomial}(m, p_1), Y_n \sim \text{Binomial}(n, p_2) \) and they are independent. To test \(H_0 : p_1 = p_2 = a \), we consider the test statistic

\[
C^2_{m,n} = \frac{(X_m - ma)^2}{ma(1-a)} + \frac{(Y_n - na)^2}{na(1-a)}.
\]

(a) Find the limit distribution of \(C^2_{m,n} \) as \(m, n \to \infty \);

Solution: We can write \(X_m \) and \(Y_n \) as

\[
X_m = \sum_{i=1}^{m} \tilde{X}_i, \text{ and } Y_n = \sum_{i=1}^{n} \tilde{Y}_i,
\]

where \(\tilde{X}_i \sim \text{Bernoulli}(p_1) \) and \(\tilde{Y}_i \sim \text{Bernoulli}(p_2) \). Under null hypothesis \(p_1 = p_2 = a \), we have

\[
\frac{X_m - ma}{\sqrt{ma(1-a)}} \xrightarrow{d} N(0,1), \text{ and } \frac{Y_n - na}{\sqrt{na(1-a)}} \xrightarrow{d} N(0,1)
\]

from central limit theorem. This leads us to the conclusion

\[
C^2_{m,n} \xrightarrow{d} \chi^2_2.
\]

(b) How would you modify the test statistic if \(a \) were unknown? What’s the limit distribution after modification? You don’t need to rigorously prove this question.

Solution: If \(a \) were unknown, then we replace it with its MLE

\[
\hat{a} = \frac{X_m + Y_n}{m + n}
\]

in the test statistic. By doing this, we add one more restriction so that one degree of freedom is sacrificed, and the limit distribution becomes \(\chi^2_1 \).