Problem 1. 9.6.7 Let \(X_1, \ldots, X_m \) and \(Y_1, \ldots, Y_n \) be independently distributed according to \(N(\xi, \sigma^2) \) and \(N\sigma(\eta, \tau^2) \), respectively. Find the minimal sufficient statistics for these cases:
(a) \(\xi, \eta, \sigma, \tau \) are arbitrary.
(b) \(\sigma = \tau \) and \(\xi, \eta, \sigma \) are arbitrary.
(c) \(\xi = \eta \) and \(\xi, \sigma, \tau \) are arbitrary.

Solution:
Writing the joint density of \(X_i \)'s and \(Y_j \)'s into the form of exponential family and by Corollary 6.16, it's easy to observe that the minimal sufficient statistics are:
(a) \((\Sigma X_i, \Sigma X_i^2, \Sigma Y_i, \Sigma Y_i^2)\)
(b) \((\Sigma X_i, \Sigma Y_i, \Sigma X_i^2 + \Sigma Y_i^2)\)
(c) \((\Sigma X_i, \Sigma X_i^2, \Sigma Y_i, \Sigma Y_i^2)\)

Problem 1. 9.6.20 (a) Show that in the \(N(\theta, \theta) \) curved exponential family, the sufficient statistic \(T=(\Sigma X_i, \Sigma X_i^2) \) is not minimal.

Solution:
\[
f_\theta(x) = \frac{1}{(\sqrt{2\pi}\theta)^n} \exp(-\sum x_i^2 - \frac{1}{\theta} \sum x_i^2 - \frac{n\theta}{2})
\]
By Factorization criterion, we know that \(\Sigma x_i^2 \) is sufficient, but there does not exist a function \(H \) such that \((\Sigma x_i, \Sigma x_i^2) = T = H(\Sigma x_i^2)\). Therefore, \((\Sigma x_i, \Sigma x_i^2)\) is not minimal.

19.6.20 (b)

Solution:
Similar to the solution of Example 6.17 on page 39, choose the natural parameter \(\eta = (4\theta^3, -6\theta^2, 4\theta) \), choose four points in \(\eta \) such that the resulting \(3 \times 3 \) difference matrix has rank 3 and is invertible. By Corollary 6.16(ii), \(T \) is minimal sufficient. Note that \(T \) is not complete since it is not of full rank.

Problem 1. 9.6.21 For the situation of Example 6.25(ii), find an unbiased estimator of \(\xi \) based on \(\Sigma X_i \), and another based on \(\Sigma X_i^2 \), hence, deduce that \(T=(\Sigma X_i, \Sigma X_i^2) \) is not complete.

Solution:
Since \(\bar{X} \) and \(\frac{\Gamma((n-1)/2)}{\sqrt{2\Gamma(n/2)}} \sqrt{\frac{S^2}{n(n-1)}} \) are both unbiased estimators for \(\xi \), there exists non-constant function \(f \) such that \(E(f(T)) = 0 \), but \(f(T) \) is not 0 a.e., thus \(T \) is not complete.

Problem 2. 7.2.5 In example 2.1, when both parameters are unknown, show that the UMVU estimator of \(\xi^2 \) is given by \(\delta = \bar{X}^2 - \frac{s^2}{n(n-1)} \) where now \(S^2 = \sum (X_i - \bar{X})^2 \)

Solution:
\((\sum X_i, \sum X_i^2)\) is complete sufficient statistics. \(S^2 = \sum (X_i - \bar{X})^2 = \sum X_i^2 - n\bar{X}^2 \)
\[E[\delta] = E[X^2] - \frac{E(S^2)}{n(n-1)} \]
\[= E[X^2] - \frac{E(\sum X_i^2 - nX^2)}{n(n-1)} \]
\[= E[X^2] + \frac{E(X^2)}{n-1} - \frac{E[\sum X_i^2]}{n(n-1)} \]
\[= \frac{n}{n-1} E[X^2] - \frac{\sum E[X_i^2]}{n(n-1)} \]
\[= \xi^2 \frac{n}{n-1} - \frac{1}{n-1} \xi^2 \]
\[= \xi^2 \]

Problem 2. 7.2.15 If \((X_1, Y_1), \ldots, (X_n, X_n)\) are iid according to any bivariate distribution with finite second moments, show that \(S_{xy}/(n-1)\) given by (2.17) is an unbiased estimator of \(\text{cov}(X_i, Y_i)\)

Solution:
\[E\left[\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \right] = E\left[\sum_{i=1}^{n} (X_i Y_i - \bar{X}Y_i - X_i \bar{Y} + \bar{X}Y) \right] \]
\[= nE(XY) - nE(\bar{X}Y) \]
\[= nE(XY) - nEXEY - n(EXY - E\bar{X}EY) \]
\[\text{Cov}(\bar{X}, \bar{Y}) = \frac{1}{n^2} \sum_i \sum_j \text{cov}(X_i, Y_j) \]

since \(\text{cov}(X_i, Y_j) = 0\) if \(i \neq j\), hence \(\text{Cov}(\bar{X}, \bar{Y}) = \frac{\text{Cov}(X,Y)}{n} \)
then
\[\frac{1}{n-1} E\left[\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) \right] = \frac{1}{n-1} [n\text{Cov}(X, Y) - n\text{Cov}(\bar{X}, \bar{Y})] \]
\[= \text{Cov}(X, Y) \]
thus \(\frac{S_{xy}}{n-1}\) is an unbiased estimator of \(\text{Cov}(X_i, Y_i)\)

Problem 2. 7.2.25 Let \(X_1, \ldots, X_m\) and \(Y_1, \ldots, Y_m\) be iid as \(U(0, \theta)\) and \(U(0, \theta')\), respectively. If \(n > 1\), determine the UMVUE of \(\theta/\theta'\).

Solution: \((X_{(m)}, Y_{(n)})\) is complete sufficient statistics. First compute the density of \(X_{(m)}\) and \(Y_{(n)}\), then compute \(E(X_{(m)})\) and \(E(Y_{(n)})\), we have \(E(X_{(m)}) = \frac{m}{m+1} \theta\) and \(E(Y_{(n)}) = \frac{n}{n-1} \frac{1}{\theta'}\). Because \(X_{(m)}\) and \(Y_{(n)}\) are independent,
\[E\left(\frac{X_{(m)}}{Y_{(n)}} \right) = \frac{mn}{(m+1)(n-1) \frac{1}{\theta'}} \frac{\theta}{\theta'} \]

From here, you should know what is the UMVUE for \(\frac{\theta}{\theta'}\).
Problem 2. 7.2.27 In example 2.6(b), show that
(a) The bias of the ML estimator is 0 when \(\xi = u \).
(b) At \(\xi = u \), the ML estimator has smaller expected squared error than the UMVU estimator.

Solution:
(a) \(\xi = u \) is equivalent to \(P = \Phi(\xi - u) = 0.5 \), then \(E(\Phi(u - \bar{X})) = E(\Phi(u - \bar{X})) = E(P(Z \leq \xi - \bar{X})) \), where \(Z \) is standard normal and independent of \(\bar{X} \).

\[
E(P(Z \leq \xi - \bar{X})) = E(P(Z + \bar{X} \leq \xi)) = \Phi(0) \text{ since } Z + \bar{X} \text{ follows distribution } N(\xi, 1 + \sigma^2/n)
\]

(b) \(MSE = bias^2 + variance \), since the bias of the ML estimator and UMVUE are both 0 and \(u - \bar{X} \) is always closer to 0 than \(\sqrt{n-1}(u - \bar{X}) \), and \(\Phi(X) \) is monotonic increasing, the ML estimator has smaller variance and thus smaller expected squared error than the UMVUE.

Problem 2. 7.3.18 If \(X \) has the Poisson distribution \(P(\theta) \), show that \(1/\theta \) does not have an unbiased estimator.

Solution:
Suppose \(1/\theta \) has an unbiased estimator \(\delta(x) \), then \(E(\delta(x)) = \sum_{x=0}^{\infty} \delta(x) \frac{e^{-\theta} \theta^x}{x!} = \theta^{-1} \)

\[
\theta^{-1} \sum_{y=0}^{\infty} \frac{\theta^y}{y!} = \sum_{x=0}^{\infty} \delta(x) \frac{\theta^x}{x!}
\]

\[
\sum_{y=0}^{\infty} \frac{\theta^y}{y!} = \sum_{x=0}^{\infty} \delta(x) \frac{\theta^x}{x!}
\]

\[
\sum_{x=1}^{\infty} \frac{\theta^x}{(x+1)!} = \sum_{x=0}^{\infty} \delta(x) \frac{\theta^x}{x!}
\]

\[
\frac{1}{\theta} + \sum_{x=0}^{\infty} \frac{\theta^x}{x!} \frac{1}{x+1} = \sum_{x=0}^{\infty} \delta(x) \frac{\theta^x}{x!}
\]

obviously, whatever \(\delta(x) \) is, the equality cannot be satisfied, hence \(1/\theta \) does not have an unbiased estimator.