Problem 1. (Problem 2.1.21).
Solution. If $X_1, \ldots, X_n \sim \text{Bern}(p)$, then $T = \sum_i X_i$ is a complete sufficient statistic. Our target is $g(p) = p^3$, and the naive guess suggested is

$$
\delta(X) = \begin{cases}
1 & \text{if } X_1 = X_2 = X_3 = 1 \\
0 & \text{o.w.}
\end{cases}
$$

We Rao-Blackwellize the estimator to get the UMVUE as follows:

$$
\eta(t) = \mathbb{E}[\delta(X) | T = t] \\
= \mathbb{E}[\delta(X_1, \ldots, X_n) | T = t] \\
= \mathbb{P}
\left(
X_1 = X_2 = X_3 = 1 \mid \sum_i X_i = t
\right) \\
= \frac{\mathbb{P}(X_1 = X_2 = X_3 = 1, \sum_i X_i = t)}{\mathbb{P}(\sum_i X_i = t)} \\
= \frac{\mathbb{P}(X_1 = 1) \mathbb{P}(X_2 = 1) \mathbb{P}(X_3 = 1) \mathbb{P}(\sum_{i=4}^n X_i = t - 3)}{\mathbb{P}(\sum_i X_i = t)} \\
= p^3 \binom{n-3}{t-3} p^{t-3} (1-p)^{n-t} \\
= \frac{\binom{n-3}{t-3} p^t (1-p)^{n-t}}{\binom{n}{t}} \\
= \frac{t(t-1)(t-2)}{n(n-1)(n-2)}.
$$

Problem 2. (Problem 2.2.1).
Solution. Assume $X_1, \ldots, X_n \sim \text{i.i.d. } \mathcal{N}(\xi, \sigma^2)$ with σ^2 known. We know that $T = \sum_i X_i$ is a complete sufficient statistic. Let $\overline{X} = Y + \xi \sim \mathcal{N}(\xi, \sigma^2/n)$, so that $Y \sim \mathcal{N}(0, \sigma^2/n)$.

Solution of (a). \(E[X^2] = E[(Y + \xi)^2] = EY^2 + 2\xi E[Y] + \xi^2 = \frac{\sigma^2}{n} + \xi^2. \) Thus,
\[
\hat{\xi}^2 = X^2 - \frac{\sigma^2}{n}
\]
is the UMVUE for \(\xi^2. \)

Solution of (b). Likewise, \(E[X^3] = E[(Y + \xi)^3] = 3EY^2 \cdot \xi + \xi^3 = \frac{3\sigma^2}{n} \xi + \xi^3. \) Thus,
\[
\hat{\xi}^3 = X^3 - \frac{3\sigma^2}{n} X
\]
is the UMVUE for \(\xi^3. \)

Problem 3. (Problem 2.2.5).
Solution. If \(X_1, \ldots, X_n \sim \text{i.i.d. } \mathcal{N}(\xi, \sigma^2), \) then \(T = (X, S^2) \) is a complete sufficient statistic. Therefore, since
\[
E \delta(X) = E[X^2] - \frac{E[S^2]}{n(n-1)} = \frac{\sigma^2}{n} + \xi^2 - \frac{\sigma^2}{n} = \xi^2,
\]
so \(\delta \) is unbiased, a function of \(T, \) and thus is the UMVUE for \(\xi^2. \)

Problem 4. (Problem 2.2.7).
Solution. Assume \(X \sim \mathcal{N}(\xi, \sigma^2). \) If an unbiased estimator \(\delta \) of \(\sigma^2 \) exists when \(\xi \) is unknown,
\[
E_{\xi,\sigma^2}[\delta(X)] = \sigma^2 \forall \xi, \sigma^2.
\]
As the hint suggests, for fixed \(\sigma = a, \) \(X \) is a complete sufficient statistic for \(\xi, \) and thus \(E_{\xi}[\delta(X)] = a^2 \) for all \(\xi \) implies \(\delta(X) = a^2 \) almost surely. However, from the uniqueness of UMVUEs, this is a contradiction. Hence, such an unbiased estimator of \(\sigma^2 \) does not exist.

Problem 5. (Problem 2.2.25).
Solution. Let \(X_1, \ldots, X_m \) and \(Y_1, \ldots, Y_n \) be i.i.d. as \(\text{Unif}(0, \theta) \) and \(\text{Unif}(0, \theta'), \) respectively. We know that \((X_{(m)}, Y_{(n)}) \) is a complete sufficient statistic of the data. (Lehmann and Casella, Example 6.23.) Since
\[
\frac{\theta}{2} = E_{\theta}[X] = E_{\theta} \left[\frac{X(1) + \ldots + X(m)}{m} \right],
\]
\[
\frac{2}{m} \sum_{i=1}^{m} X_{(i)} \text{ is an unbiased estimator of } \theta. \] Using Rao-Blackwell Theorem,
\[
\hat{\theta} = E_{\theta} \left[\frac{2}{m} (X(1) + \ldots + X(m)) \middle| X(m) \right] = \frac{2}{m} \left((m - 1) \frac{X(m)}{2} + X(m) \right) = \frac{m+1}{m} X(m)
\]
is the UMVUE of \(\theta. \) Now we will derive the UMVUE of \(1/\theta'. \) Since \(Y_{(n)} = \max\{Y_1, \ldots, Y_n\}, \) the cdf of \(Y_{(n)} \) is
\[
P(Y_{(n)} \leq t) = P(Y_1 \leq t) \cdot \ldots \cdot P(Y_n \leq t) = \frac{t^n}{\theta'}
\]
for $t \in [0, \theta']$. Hence, $Y(n)$ has pdf $f_{Y(n)}(t) = \frac{n t^{n-1}}{(\theta')^n} \mathbb{1}_{t \in [0, \theta']}$. Therefore,

$$E_{\theta'} \left[\frac{1}{Y(n)} \right] = \int_0^{\theta'} \frac{1}{y} \left(\frac{n y^{n-1}}{(\theta')^n} \right) dy = \frac{n}{n - 1} \frac{1}{\theta'}.$$

Hence, the UMVUE of $1/\theta'$ is

$$\hat{1}/\theta' = \frac{n - 1}{n} \frac{1}{Y(n)}.$$

Therefore, since X^m and Y^n are independent, the UMVUE of θ/θ' is

$$\hat{\theta}/\theta' = \hat{1}/\theta' = \frac{(m + 1)(n - 1)}{mn} \frac{X(m)}{Y(n)}.$$

\textbf{Problem 6.} (Problem 2.2.27).

\textit{Solution of (a).} The bias of the ML estimator $\Phi(u - \bar{X})$ is

$$\text{bias}(\xi) = E[\Phi(u - \bar{X})] - \Phi(u - \xi).$$

Note that $u - \bar{X} \sim \mathcal{N}(u - \xi, \frac{1}{n})$. Therefore, if $\xi = u$, then $u - \bar{X} \sim \mathcal{N}(0, \frac{1}{n})$. Also, since $\Phi(z) - \Phi(0)$ is an odd function, we get

$$E[\Phi(u - \bar{X}) - \Phi(0)] = 0,$$

which implies $\text{bias}(u) = 0$. \hfill \Box$

\textit{Solution of (b).}

$$R_{\text{ML}}(\xi) = E_{\bar{X}} \left[(\Phi(u - \bar{X}) - \Phi(u - \xi))^2 \right], \quad R_{\delta}(\xi) = E_{\xi} \left[\left(\Phi \left(\sqrt{\frac{n}{n - 1}} (u - \bar{X}) \right) - \Phi(u - \xi) \right)^2 \right].$$

Then at $\xi = u$, the difference of the expected square error is,

$$R_{\delta}(u) - R_{\text{ML}}(u) = E_{\xi=u} \left[\left(\Phi \left(\sqrt{\frac{n}{n - 1}} (u - \bar{X}) \right) - \Phi(0) \right)^2 \right] - E_{\xi=u} \left[(\Phi(u - \bar{X}) - \Phi(0))^2 \right]$$

$$= E_{\xi=u} \left[\Phi \left(\sqrt{\frac{n}{n - 1}} (u - \bar{X}) \right)^2 - \Phi(u - \bar{X})^2 \right].$$

However, since $\left(\sqrt{\frac{n}{n - 1}} (u - \bar{X}) \right)^2 > (u - \bar{X})^2$ always and $\Phi(\cdot)$ is strictly increasing, the integrand is always positive. Hence, $R_{\delta}(u) - R_{\text{ML}}(u) > 0$. \hfill \Box$

\textbf{Problem 7.} (Problem 2.3.18).
Solution. Let $X \sim \text{Poisson}(\theta)$. Suppose there exists an unbiased estimator $\delta(X)$ of $1/\theta$. Then for all θ,

$$\frac{1}{\theta} = E_\theta \delta(X) = \sum_{x=0}^{\infty} e^{-\theta} \frac{\theta^x}{x!} \delta(x),$$

and thus

$$\sum_{x=0}^{\infty} \frac{\theta^x}{x!} = \sum_{x=1}^{\infty} \frac{\delta(x-1)}{(x-1)!} \theta^x.$$

However, this does not hold in general, since the right hand side does not have a constant term. Hence, there is no such an unbiased estimator of $1/\theta$. \hfill \Box

Problem 8. (Problem 2.3.20).

Solution of (c). One can easily see that

$$P_\lambda(x) = \frac{e^{-\lambda} \lambda^x}{1 - e^{-\lambda} x!} \quad \text{for } x = 1, 2, \ldots.$$

Note that

$$E_\lambda X = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \sum_{x=1}^{\infty} \frac{\lambda^x}{(x-1)!} = \frac{\lambda}{1 - e^{-\lambda}}.$$

On the other hand, we would get

$$\log P_\lambda(x) = -\lambda - \log(1 - e^{-\lambda}) + x \log \lambda - \log x!,$$

$$\frac{\partial}{\partial \lambda} \log P_\lambda(x) = -\frac{1}{1 - e^{-\lambda}} + \frac{x}{\lambda},$$

$$\frac{\partial^2}{\partial \lambda^2} \log P_\lambda(x) = \frac{e^{-\lambda}}{(1 - e^{-\lambda})^2} - \frac{x}{\lambda^2}.$$

Therefore,

$$i(\theta) = \frac{E X_1}{\lambda^2} - \frac{e^{-\lambda}}{(1 - e^{-\lambda})^2} = \frac{1}{\lambda(1 - e^{-\lambda})} - \frac{e^{-\lambda}}{(1 - e^{-\lambda})^2} = \frac{1 - e^{-\lambda} - \lambda e^{-\lambda}}{\lambda(1 - e^{-\lambda})^2}.$$

Thus, the CRLB of this problem is

$$\text{Var} \hat{\lambda} \geq \frac{\lambda(1 - e^{-\lambda})^2}{n(1 - e^{-\lambda} - \lambda e^{-\lambda})}. \hfill \Box$$

Problem 9. (Problem 2.3.21).

Solution. Let $Y \sim \text{Poisson}(\lambda)$ and $Z = Y|\{Y \leq a\}$. Then

$$P_\lambda(Z = z) = \frac{P(Y = y, Y \leq a)}{P(Y \leq a)} = \frac{\lambda^y}{A(\lambda)y!} I_{y \in [0, a]},$$
where \(A(\lambda) = \sum_{x=0}^{\lambda} \frac{\lambda^x}{x!} \). Suppose there exists an unbiased estimator \(\delta(Z) \) of \(\lambda \). Then for all \(\lambda > 0 \),

\[
\sum_{z=0}^{\lambda} \delta(z) \mathbb{P}(Z = z) = \frac{1}{A(\lambda)} \sum_{z=0}^{\lambda} \frac{\delta(z)}{z!} \lambda^z = \lambda.
\]

After some algebra, we have

\[
\sum_{z=1}^{\lambda} \left(\frac{\delta(z)}{z!} - \frac{1}{(z-1)!} \right) \lambda^z + \delta(0) = \frac{\lambda^{a+1}}{a!} \quad \forall \lambda > 0.
\]

This cannot be true, however, for any choice of \(\delta(\cdot) \), because degrees of LHS and RHS differ. Hence, there exists no unbiased estimator of \(\lambda \).

Problem 10. (Problem 2.3.23). Suppose \(X_1, \ldots, X_n \sim \text{i.i.d. Poisson}(\lambda) \), and consider estimation of \(e^{-b\lambda} \), where \(b \) is known.

Solution of (a). \(T = \sum_i X_i \) is a complete sufficient statistic. We are given \(\delta^*(X) = \eta(T) = (1 - \frac{b}{n})^T \). The expectation is

\[
\mathbb{E} \eta(T) = \sum_{x=0}^{\infty} e^{-n\lambda} \frac{(n\lambda)^x}{x!} \left(1 - \frac{b}{n} \right)^x = e^{-b\lambda} \sum_{x=0}^{\infty} e^{-(n-b)\lambda} \frac{(n-b)\lambda^x}{x!} = e^{-b\lambda},
\]

so it is unbiased. By Lehmann-Scheffe Theorem, \(\delta^* \) is the UMVUE.

Solution of (b). If \(b > n \), \(\delta^* \) is positive if \(T \) is even, and negative if \(T \) is odd. Therefore, its behavior is not desirable as an estimator of a positive quantity \(e^{-b\lambda} \).

Problem 11. (Problem 1.6.29). If a minimal sufficient statistic exists, a necessary condition for a sufficient statistic to be complete is for it to be minimal.

Solution. Suppose that \(T = h(U) \) is minimal sufficient and \(U \) is complete. If \(U \) is not equivalent to \(T \), there exists a function \(\psi \) such that \(\psi(U) \neq \mathbb{E}[\psi(U)|T] \) with positive probability. However, by law of iterated expectation, we have

\[
\mathbb{E} \left[\mathbb{E}[\psi(U)|T] - \psi(U) \right] = 0,
\]

and thus \(\mathbb{E}[\psi(U)|T] - \psi(U) \) is an unbiased estimator of 0. Now, it follows that \(\mathbb{E}[\psi(U)|T] - \psi(U) = \mathbb{E}[\psi(U)|h(U)] - \psi(U) = 0 \) almost surely from completeness of \(U \), which is a contradiction. Hence, \(U \) is equivalent to the minimal sufficient statistic \(T \).

Problem 12. (Problem 1.6.32).

Solution of (a). \(\mathcal{P}_0, \mathcal{P}_1 \) are two families of distributions such that \(\mathcal{P}_0 \subset \mathcal{P}_1 \) and every null set of \(\mathcal{P}_0 \) is also a null set of \(\mathcal{P}_1 \). Assume \(T \) is complete for \(\mathcal{P}_0 \). Then,

\[
\mathbb{E}_F[\delta(T)] = 0 \quad \forall F \in \mathcal{P}_0 \implies \delta \equiv 0 \text{ (a.e. } \mathcal{P}_0 \).
We have

\[\mathbb{E}_G[\delta(T)] = 0 \quad \forall G \in \mathcal{P}_1 \implies \delta \equiv 0 \text{ (a.e. } \mathcal{P}_0) \]

\[\implies \delta \equiv 0 \text{ (a.e. } \mathcal{P}_1), \]

so this implies \(T \) is also complete for \(\mathcal{P}_1 \). Note that eq. (0.1) follows from \(\mathcal{P}_0 \subset \mathcal{P}_1 \), and eq. (0.2) follows because every null set of \(\mathcal{P}_0 \) is also a null set of \(\mathcal{P}_1 \).

Solution of (b). \(\mathcal{P}_0 = \{ \text{Binom}(n, p) : 0 < p < 1 \} \) where \(n \) is fixed, and \(\mathcal{P}_1 = \mathcal{P}_0 \cup \{ \text{Poisson}(1) \} \).

\[\mathbb{E}_p \delta(X) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta(k) = 0 \quad \forall p \in (0, 1) \implies \sum_{k=0}^{n} \binom{n}{k} \rho^k \delta(k) = 0 \quad \forall \rho > 0 \]

\[\implies \delta(X) \equiv 0 \text{ (a.e.)} \]

Hence, \(\mathcal{P}_0 \) is complete. However, considering \(\mathcal{P}_1 \), we assume

\[\mathbb{E}_p \delta(X) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta(k) = 0 \quad \forall p \in (0, 1), \]

and

\[\mathbb{E}_{\text{Poisson}(1)} \delta(X) = \sum_{k=0}^{\infty} \frac{e^{-1}}{k!} \delta(k) = 0. \]

From the first restriction, it is required that \(\delta(0) = \ldots = \delta(n) = 0 \) as we derived. However, the second restriction

\[\sum_{k=n+1}^{\infty} \frac{\delta(k)}{k!} = 0 \]

can be satisfied with a simple choice of \(\delta \), for example, \(\delta(n+1) = (n+1)! \), \(\delta(n+2) = -(n+2)! \), and \(\delta(x) = 0 \) for \(x \geq n + 3 \). Hence, \(\mathcal{P}_1 \) is not complete.

Problem 13. (Additional problem 1). Show that any finite family of densities on \(\mathbb{R} \) with common support is an exponential family. If the family has more than one density, the parameter space is not “natural”.

Solution. Let \(\mathcal{F} = \{ f_1(x), \ldots, f_N(x) \} \). Then we can express this family as the following form.

\[\mathcal{F} = \left\{ g_{\eta}(x) : g_{\eta}(x) = \exp \left(\sum_{i=1}^{N} \eta_i \log f_i(x) \right), \eta \in \{ e_1, \ldots, e_N \} \right\}, \]

where we denote \(e_i \) as a standard unit vector. Clearly, if \(N \geq 2 \), then the parameter space is not natural.

Problem 14. (Additional problem 2). Define \(\mathbb{E}^{(\lambda)} X = (\mathbb{E} X^\lambda)^{1/\lambda} \).

(a) Show \(\lim_{\lambda \to 0} \mathbb{E}^{(\lambda)} = e^{\mathbb{E} \log X} \).
(b) Extending the definition through \(\lambda = 0 \), show that \(E^{(\lambda)} X \) is monotonically increasing in \(\lambda \).

Solution of (a). We want to prove
\[
\lim_{\lambda \to 0} \frac{1}{\lambda} \log E X^{\lambda} = E \log X.
\]
Using L'Hopital's Law, it follows that
\[
\lim_{\lambda \to 0} \frac{1}{\lambda} \log E X^{\lambda} = \lim_{\lambda \to 0} \frac{E[X^{\lambda} \log X]}{E[X^\lambda]} = \frac{E[X^0 \log X]}{E[X^0]} = E \log X.
\]

Solution of (b). Consider \(\eta > \lambda > 0 \). Then \(x \mapsto x^{\frac{\eta}{\lambda}} \) is (strictly) convex, and thus using Jensen's Inequality, we would get
\[
(E X^{\lambda})^{\frac{\eta}{\lambda}} > E (X^{\lambda})^{\frac{\eta}{\lambda}} = E X^{\eta},
\]
which implies \(E^{(\eta)} X > E^{(\lambda)} X \). Likewise, one can prove that it also holds when \(0 > \eta > \lambda \). Since \(E^{(\eta)} X > E^{(0)} X > E^{(\lambda)} X \) for \(\eta > 0 > \lambda \), \(E^{(\lambda)} X \) is monotonically increasing in \(\lambda \).

Problem 15. (Additional problem 3). For a distribution symmetric with respect to its mean, show that a statistic
\[
T = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2, \sum_{i=1}^{n} X_i^3 \right)
\]
is not complete.

Solution. Let us denote \(T = (T_1, T_2, T_3) \). Let \(\theta := E X_1 \). Then by symmetry, we know that \(E(X_1 - \theta)^3 = 0 \). Expanding the terms, we would get
\[
E(X_1 - \theta)^3 = E X_1^3 - 3\theta E X_1^2 + 3\theta^2 E X_1 - \theta^3 = E X_1^3 - 3\theta E X_1^2 + 2\theta^3 = 0.
\]
Then we consider a function of data \(\delta(X_1, \ldots, X_n) = \sum_i (X_i - \bar{X})^3 \). Then
\[
\sum_i (X_i - \bar{X})^3 = \sum_i (X_i^3 - 3X_i^2 \bar{X} + 3X_i \bar{X}^2 - \bar{X}^3)
\]
\[
= \sum_i X_i^3 - 3 \sum_i X_i^2 \bar{X} + 3n \bar{X}^2 - n \bar{X}^3
\]
\[
= T_3 - 3nT_1T_2 + \frac{2}{n^2} T_1^3,
\]
\(\delta \) is a function of \(T \). Also, we observe
\[
E(X_1 - \bar{X})^3 = E X_1^3 - 3 E X_1^2 \bar{X} + 3 E X_1 \bar{X}^2 - E \bar{X}^3
\]
\[
= E X_1^3 - \frac{3}{n} (E X_1^3 + (n-1) E X_1^2 E X_1)
\]
\[
+ \frac{3}{n^2} (E X_1^3 + 3(n-1) E X_1^2 E X_1 + (n-1)(n-2)(E X_1)^3)
\]

7
\[
- \frac{1}{n^3} \left(n \mathbb{E} X_1^3 + 3n(n-1) \mathbb{E} X_1^2 \cdot \mathbb{E} X_1 + n(n-1)(n-2)(\mathbb{E} X_1)^3\right)
\]
\[
= \frac{\mathbb{E} X_1^3}{n^2} (n-1)(n-2) - \frac{\mathbb{E} X_1^2 \mathbb{E} X_1}{n^2} 3(n-1)(n-2) + \frac{(\mathbb{E} X_1)^3}{n^2} - 2(n-1)(n-2)
\]
\[
= \frac{(n-1)(n-2)}{n^2} \left(\mathbb{E} X_1^3 - 3 \mathbb{E} X_1^2 \mathbb{E} X_1 + 2(\mathbb{E} X_1)^3\right)
\]
\[
= \frac{(n-1)(n-2)}{n^2} \mathbb{E}(X_1 - \mathbb{E} X_1)^3 = 0.
\]

Thus, \(\delta \) is a nontrivial unbiased estimator of 0. Hence, \(T \) is not a complete statistic. \(\square \)