Solution to Problem 2. (1) Let \(f(x) = \lim_{n \to \infty} f_n(x) \) for any \(x \in X \) be the pointwise limit, then \(f: X \to \mathbb{C} \). By uniform Cauchy-ness, for any \(\varepsilon > 0 \) there is an \(N \in \mathbb{N} \) such that for ant \(n, m \geq N \) and any \(x \in X \), \(|f_n(x) - f_m(x)| < \varepsilon \). Fix an \(n \geq N \),
\[
|f_n(x) - f(x)| \leq |f_n(x) - f_m(x)| + |f_m(x) - f(x)|.
\]
Let \(m \to \infty \) we get \(|f_n(x) - f(x)| < \varepsilon \), which proves \(\|f_n - f\|_u \to 0 \). Also \(\|f_n - f\|_u < \varepsilon < +\infty \).

(2) For any \(\varepsilon > 0 \), for a fixed \(n \in \mathbb{N} \) large enough that \(\|f - f_n\|_u < \varepsilon / 3 \), let \(\delta > 0 \) that \(|y - x| < \delta \implies |f_n(x) - f_n(y)| < \varepsilon / 3\), which implies
\[
|f(x) - f(y)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \varepsilon.
\]
So \(f \) is continuous. \(\square \)

Solution to Problem 3. (1) Denote
\[
A := \{ x \in X \mid f(x) = g(x) \}.
\]
For any \(x \in A^C \), there are open neighborhoods \(U \ni f(x) \) and \(V \ni g(x) \) such that \(U \cap V \neq \emptyset \) since \(Y \) is Hausdorff. So \(G := f^{-1}(U) \cap g^{-1}(V) \) is an open neighborhood of \(x \in X \) that any \(G \cap A = \emptyset \), so \(A \) is closed.

(2) If \(A \) is dense and closed, then \(A = \overline{A} = X \). \(\square \)

Solution to Problem 4. Suppose there are \(x \neq y \in X \) such that for any \(f \in \mathcal{T} \), \(f(x) = f(y) \). So no set of the form \(f^{-1}(U) \), where \(U \subset \mathbb{R} \) is an open subset, separates \(x \) and \(y \). Since \(\mathcal{T} \) is generated by \(f^{-1}(U) \), no open set in \(\mathcal{T} \) separates \(x \) and \(y \), so \(\mathcal{T} \) is not Hausdorff.

Suppose for any \(x \neq y \in X \) there is an \(f \in \mathcal{T} \) that \(f(x) \neq f(y) \), then let \(U \ni f(x) \) and \(V \ni f(y) \) be disjoint open subsets of \(\mathbb{R} \). Then \(f^{-1}(U) \ni x \) and \(g^{-1}(V) \ni y \) are disjoint opens neighborhoods of \(x \) and \(y \). So \(\mathcal{T} \) is Hausdorff. \(\square \)