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Introduction

Suppose there are N players and the ith player’s strategy vector is
xi ∈ Rni . Denote

x := (x1, . . . , xN), x−i := (x1, . . . , xi−1, xi+1, . . . , xN).

The Nash equilibrium problem (NEP) is to find a vector x such
that for each i = 1, . . . ,N, the xi solves the following optimization
problem, for given x−i of other player’s strategies.

Fi (x−i ) :


min

xi∈Rni
fi (xi , x−i )

s.t. gi ,j(xi ) = 0 (j ∈ Ei ),
gi ,j(xi ) ≥ 0 (j ∈ Ii ).

(1.1)

A solution of the NEP is called a Nash equilibrium (NE).
X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Notations

In the above
I fi (xi , x−i ) - The ith player’s objective function.
I gi ,j(xi ) - The ith player’s constraining function.
I Ei - The labelling set of equality constraints.
I Ii - The labelling set of inequality constraints.
I ni - The dimension of xi .

Besides that, we let
I n := n1 + · · ·+ nN .
I mi := Ei ∪ Ii .
I Xi := {xi ∈ Rni : gi ,j(xi ) = 0 (j ∈ Ei ), gi ,j(xi ) ≥ 0 (j ∈ Ii )}.
I [k] := {1, . . . , k}.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Introduction

Example 1.1

Consider the 2-player NEP with the individual optimization

1st player:
{ min

x1∈R2
x1,1(x1,1 + x2,1 + 4x2,2) + 2x2

1,2,

s.t. 1− (x1,1)2 − (x1,2)2 ≥ 0,

2nd player:


min

x2∈R2
x2,1(x1,1 + 2x1,2 + x2,1)

+x2,2(2x1,1 + x1,2 + x2,2),
s.t. 1− (x2,1)2 − (x2,2)2 ≥ 0.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Introduction

This NEP has only 3 NEs, which are

1st NE: x∗1 = (0, 0), x∗2 = (0, 0);
2nd NE: x∗1 = (1, 0), x∗2 = 1√

5(−1,−2);
3rd NE: x∗1 = (−1, 0), x∗2 = 1√

5(1, 2).

It is interesting to note that each player’s objective is strictly
convex with respect to its strategy, because their Hessian’s with
respect to their own strategies are positive definite. However, there
are 3 isolated Nash equilibria.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Optimality conditions for individual optimization

Consider the ith player’s individual optimization problem Fi (x−i ) in
(1.1), for given x−i . For convenience, we write the constraining
functions as

gi (xi ) := (gi ,1(xi ), . . . , gi ,mi (xi )).

Suppose x∗ = (x∗1 , . . . , x∗N) is a NE. Under linear independence
constraint qualification condition (LICQC) at x∗i , there exist
Lagrange multipliers λi ,j such that{ ∑mi

j=1 λi ,j∇xi gi ,j(x∗i ) = ∇xi fi (x∗),
0 ≤ λi ,j ⊥ gi ,j(x∗i ) ≥ 0 (j ∈ Ii ).

(2.1)

The above is the Karush-Kuhn-Tucker (KKT) condition for the
optimization Fi (x∗−i ).

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Optimality conditions for individual optimization

Therefore, x∗ and λi ,j satisfy the following polynomial system for
all i = 1, . . . ,N

∇xi gi ,1 ∇xi gi ,2 · · · ∇xi gi ,mi

gi ,1(x) 0 · · · 0
0 gi ,2(x) · · · 0
...

... . . . ...
0 0 · · · gi ,mi (x)


︸ ︷︷ ︸

Gi (xi )


λi ,1
λi ,2
...

λi ,mi


︸ ︷︷ ︸

λi

=


∇xi fi
0
...
0


︸ ︷︷ ︸

f̂i (x)

. (2.2)

If there exists a matrix polynomial Hi (xi ) such that
Hi (xi )Gi (xi ) = Imi , (2.3)

then we can express λi as
λi = Hi (xi )Gi (xi )λi = Hi (xi )f̂i (x). (2.4)

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Optimality conditions for individual optimization

Interestingly, the matrix polynomial Hi (xi ) satisfying (2.3) exists
under the nonsingularity condition on gi . The polynomial tuple gi
is said to be nonsingular if Gi (xi ) has full column rank for all
xi ∈ Cni [1]. It is a generic condition. We remark that if gi is
nonsingular, then the LICQC holds at every minimizer of (1.1), so
there must exist λi ,j satisfying (2.1).

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Optimality conditions for individual optimization

Assume that every constraining polynomial tuple gi is nonsingular.
Then λi ,j(x) can be expressed as polynomials as in (2.4), and each
Nash equilibrium x∗ satisfies the following polynomial systems
(i = 1, . . . ,N)

(Si ) :


∇xi fi (x)−

∑mi
j=1 λi ,j(x)∇xi gi ,j(xi ) = 0,

gi ,j(xi ) = 0 (j ∈ Ei ), λi ,j(x)gi ,j(xi ) = 0 (j ∈ Ii ),
gi ,j(xi ) ≥ 0 (j ∈ Ii ), λi ,j(x) ≥ 0 (j ∈ Ii ).

(2.5)

The above are necessary conditions for NEs. When every
optimization in (1.1) is convex, the (2.5) are sufficient conditions
for NEs.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Optimization based on KKT conditions

Let [x]d be the vector of monomials in x whose degree are not
greater than d . Choose a generic positive definite matrix

Θ ∈ R(n+1)×(n+1).

Then we consider the following optimization problem

min
x

[x]T1 ·Θ · [x]1
s.t. ∇xi fi (x)−

∑mi
j=1 λi ,j(x)∇xi gi ,j(xi ) = 0 (i ∈ [N]),

gi ,j(xi ) = 0 (j ∈ Ei , i ∈ [N]),
λi ,j(x)gi ,j(xi ) = 0 (j ∈ Ii , i ∈ [N]),
gi ,j(xi ) ≥ 0 (j ∈ Ii , i ∈ [N]),
λi ,j(x) ≥ 0 (j ∈ Ii , i ∈ [N]).

(2.6)

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Optimization based on KKT conditions

Under the nonsingularity assumptions on gi , every Nash
equilibrium x∗ is a feasible point of (2.6), while the converse is
typically not true. However, for every feasible point x of (2.6), the
xi is a critical point for the optimization Fi (x−i ). It is important to
observe that if (2.6) is infeasible, then there are no NEs. If (2.6) is
feasible, then it must have a minimizer, because its objective is a
positive definite quadratic function. Moreover, for generic Θ, the
minimizer of (2.6) is unique.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Checking the Nash equilibrium

Assume that u := (u1, . . . , uN) is an optimizer of (2.6). If each ui
is a minimizer for the optimization problem Fi (u−i ), then u is a
NE. To this end, for each player, consider the optimization
problem: 

ωi := min fi (xi , u−i )− fi (ui , u−i )
s.t. gi ,j(xi ) = 0 (j ∈ Ei ),

gi ,j(xi ) ≥ 0 (j ∈ Ii ).
(2.7)

If all the optimal values ωi ≥ 0, then u is a Nash Equilibrium.
However, if one of them is negative, say, ωi < 0, then u is not a
NE. Let Ui be a set of some optimizers of (2.7), then u violates
the following inequalities

fi (xi , x−i ) ≤ fi (v , x−i ) (v ∈ Ui ). (2.8)

However, every Nash equilibrium must satisfy (2.8).
X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Excluding a point which is not a NE

When u is not a NE, we aim at finding a new candidate by posing
the inequalities in (2.8). Therefore, we consider the following
optimization problem:

min
x

[x]T1 ·Θ · [x]1
s.t. ∇xi fi (x)−

∑mi
j=1 λij(x)∇xi gi ,j(xi ) = 0 (i ∈ [N]),

gi ,j(xi ) = 0 (j ∈ Ei , i ∈ [N]),
λi ,j(x)gi ,j(xi ) = 0 (j ∈ Ii , i ∈ [N]),
gi ,j(xi ) ≥ 0 (j ∈ Ii , i ∈ [N]),
λi ,j(x) ≥ 0 (j ∈ Ii , i ∈ [N]),
fi (v , x−i )− fi (xi , x−i ) ≥ 0 (v ∈ Ki , i ∈ [N]).

(2.9)

In the above, each Ki is a set containing optimizers of (2.7). If the
minimizer of (2.9) is verified to be a NE, then we are done.
Otherwise, we can add more inequalities like (2.8).

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Repeating this procedure, we get the following algorithm.

Algorithm 2.1 (Finding one Nash equilibrium)

For the NEP given as in (1.1), do the following
S.0 Initialize Ki := ∅ for all i and l := 0. Choose a generic

positive definite matrix Θ of length n + 1.
S.1 Solve the polynomial optimization problem (2.9). If it is

infeasible, there is no NE and stop; otherwise, solve it for
an optimizer u.

S.2 For each i = 1, . . . ,N, solve the optimization (2.7). If all
ωi ≥ 0, u is a NE and stop. If one of ωi is negative, go to
the next step.

S.3 For each i with ωi < 0, obtain a set Ui of some (may not
all) optimizers of (2.7); then update the set Ki := Ki ∪ Ui .
Let l := l + 1, then go to Step 1.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Finding one Nash equilibrium

Theorem 2.2 (J. Nie, X. Tang)

Assume each constraining polynomial tuple gi is nonsingular and
let λi ,j(x) be Lagrange multiplier polynomials as in (2.4). Let G be
the feasible set of (2.6) and G∗ be the set of all NEs. If the
complement G\G∗ is a finite set, i.e., the cardinality
` := |G\G∗| <∞, then Algorithm 2.1 must terminate within at
most ` loops.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Finding one Nash equilibrium

Corollary 2.3 (J. Nie, X. Tang)

Assume each gi is a nonsingular tuple of polynomials. Suppose
each gi ,j(xi ) (j ∈ Ei) is linear, each gi ,j(xi ) (j ∈ Ii) is concave, and
each fi (xi , x−i ) is convex in xi for given x−i . Then Algorithm 2.1
must terminate at the first loop with l = 0, returning a NE or
reporting that there is no NE.
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More Nash Equilibria

Assume that x∗ is a Nash Equilibrium produced by Algorithm 2.1,
i.e., x∗ is also a minimizer of (2.9). Note that all KKT points x
satisfying

[x]T1 Θ[x]1 < [x∗]T1 Θ[x∗]1
are excluded from the feasible set of (2.9) by the constraints

fi (ui , x−i )− fi (xi , x−i ) ≥ 0 (∀ u ∈ Ki , ∀ i ∈ [N]).

If x∗ is an isolated NE (e.g., this is the case if there are finitely
many NEs), there exists a scalar δ > 0 such that

[x]T1 Θ[x]1 ≥ [x∗]T1 Θ[x∗]1 + δ

for all other NEs x.
X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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More Nash Equilibria

For such δ, we can try to find a different NE by solving the
following optimization problem

min
x

[x]T1 Θ[x]1
s.t. ∇xi fi (x)−

∑mi
j=1 λij(x)∇xi gi ,j(xi ) = 0 (i ∈ [N]),

gi ,j(xi ) = 0 (j ∈ Ei , i ∈ [N]),
λi ,j(x)gi ,j(xi ) = 0 (j ∈ Ii , i ∈ [N]),
gi ,j(xi ) ≥ 0 (j ∈ Ii , i ∈ [N]),
λi ,j(x) ≥ 0 (j ∈ Ii , i ∈ [N]),
fi (v , x−i )− fi (xi , x−i ) ≥ 0 (v ∈ Ki , i ∈ [N]),
[x]T1 Θ[x]1 ≥ [x∗]T1 Θ[x∗]1 + δ.

(2.10)

When an optimizer of (2.10) is computed, we can check if it is a
NE or not by solving (2.7). If it is, we get a new NE that is
different from x∗. Otherwise, we can union new points to Ki .

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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More Nash Equilibria

A concern in computation is how to choose the constant δ > 0 for
(2.10). We want a value δ > 0 such that there is no other Nash
equilibrum u such that [u]T1 Θ[u]1 ≤ [x∗]T1 Θ[x∗]1 + δ. To this end,
we consider the following maximization problem

max
x

[x]T1 Θ[x]1
s.t. ∇xi fi (x)−

∑mi
j=1 λij(x)∇xi gi ,j(xi ) = 0 (i ∈ [N]),

gi ,j(xi ) = 0 (j ∈ Ei , i ∈ [N]),
λi ,j(x)gi ,j(xi ) = 0 (j ∈ Ii , i ∈ [N]),
gi ,j(xi ) ≥ 0 (j ∈ Ii , i ∈ [N]),
λi ,j(x) ≥ 0 (j ∈ Ii , i ∈ [N]),
fi (v , x−i )− fi (xi , x−i ) ≥ 0 (v ∈ Ki , i ∈ [N]),
[x]T1 Θ[x]1 ≤ [x∗]T1 Θ[x∗]1 + δ.

(2.11)

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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More Nash Equilibria

Interestingly, if x∗ is also a maximizer of (2.11), then the feasible
set of (2.10) contains all NEs except x∗, under some general
assumptions.

Proposition 2.4 (J. Nie, X. Tang)

Assume Θ is a generic positive definite matrix and x∗ is a
minimizer of (2.9).
(i) If x∗ is also a maximizer of (2.11), then there is no other Nash

Equilibrium u satisfying [u]T1 Θ[u]1 ≤ [x∗]T1 Θ[x∗]1 + δ.
(ii) If x∗ is an isolated KKT point, then there exists δ > 0 such

that x∗ is also a maximizer of (2.11).

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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More Nash Equilibria

Algorithm 2.5 (Finding more Nash Equilibiria)

Give an initial value for δ (say, 0.1).
S.1 Solve the maximization problem (2.11). If its optimal value

η equals υ := [x∗]T1 Θ[x∗]1, then go to Step 2. If η is bigger
than υ, then let δ = min(δ/5, η − υ) and repeat this step.

S.2 Solve the optimization problem (2.10). If it is infeasible,
then there are no additional NEs; if it is feasible, solve it
for a minimizer u.

S.3 For each i = 1, . . . ,N, solve the optimization (2.7) for the
optimal value ωi . If all ωi ≥ 0, stop and u is a NE. If one of
ωi is negative, go to Step 4.

S.4 For each i ∈ [N], update the set Ki := Ki ∪ Ui , and then go
back to Step 2.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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More Nash Equilibria

Theorem 2.6 (J. Nie, X. Tang)

Under the same assumptions in Theorem 2.2, if Θ is a generic
positive definite matrix and x∗ is an isolated KKT point, then
Algorithm 2.5 must terminate after finitely many steps, returning a
NE that is different from x∗ or reporting the nonexistence of other
NEs.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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More Nash Equilibria

Once a new NE is obtained, we can repeatedly apply
Algorithm 2.5, to compute more NEs, if they exist. In particular, if
there are finitely many NEs, we can eventually get all of them.

Corollary 2.7 (J. Nie, X. Tang)

Under the assumptions of Theorem 2.6, if there are finitely many
Nash equilibria, then all of them can be found by applying
Algorithm 2.5 repeatedly.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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More Nash Equilibria

Theorem 2.8 (J. Nie, X. Tang)

Let di ,j > 0, ai ,j > 0 be degrees, for i ∈ [N], j ∈ [mi ]. If each gi ,j is
a generic polynomial in xi of degree di ,j and each fi is a generic
polynomial in x and its degree in xj is ai ,j , then the KKT system
has finitely many complex solutions and hence the NEP has finitely
many KKT points.
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Localizing and moment matrices

Let RNn
2d denote the space of all real vectors that are labeled by

α ∈ Nn
2d . Each y ∈ RNn

2d is labeled as

y = (yα)α∈Nn
2d
.

Such y is called a truncated multi-sequence (tms) of degree 2d .
For a polynomial f =

∑
α∈Nn

2d
fαzα ∈ R[z ]2d , define the operation

〈f , y〉 =
∑
α∈Nl

2d

fαyα. (3.1)

The operation 〈f , y〉 is a bilinear function in (f , y).

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Localizing and moment matrices

For a polynomial q ∈ R[z ] with deg(q) ≤ 2k and the integer
t = k − ddeg(q)/2e,

the outer product q · [z ]t([z ]t)T is a symmetric matrix polynomial
in z , with length

(n+t
t
)
. We write the expansion as

q · [z ]t([z ]t)T =
∑

α∈Nn
2d

zαQα,

for some symmetric matrices Qα. Then we define the matrix
function

L(d)
q [y ] :=

∑
α∈Nn

2d
yαQα. (3.2)

It is called the kth localizing matrix of q and generated by y . For
given q, L(d)

q [y ] is linear in y . Clearly, if q(u) ≥ 0 and y = [u]2d ,
then

L(d)
q [y ] = q(u)[u]t [u]Tt � 0.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Localizing and moment matrices

When q is the constant one polynomial, the localizing matrix
L(d)

1 [y ] reduces to a moment matrix, which we denote as

Md [y ] := L(d)
1 [y ].

For instance, for n = 2 and y ∈ RN2
4 , we have

M2[y ] =



y00 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04


.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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The optimization for all players

First, we discuss how to solve (2.9). Suppose the set Ki is given,
for each player. For notational convenience, denote the polynomial
tuples

Φi :=
{
∇xi fi (x)−

∑mi
j=1 λij(x)∇xi gij

}
∪
{

gi ,j : j ∈ Ei
}
∪
{
λi ,j(x) · gi ,j : j ∈ Ii

}
,

Ψi :=
{

fi (v , x−i )− fi (xi , x−i ) : v ∈ Ki
}

∪
{

gi ,j : j ∈ Ii
}
∪
{
λi ,j(x) : j ∈ Ii

}
.

(3.3)

And the unions

Φ :=
N⋃

i=1
Φi , Ψ :=

N⋃
i=1

Ψi . (3.4)

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials



Introduction Polynomial optimization formulations Moment-SOS relaxations Numerical Experiments Conclusions

The optimization for all players

Then, the optimization (2.9) can be equivalently written as
ϑmin := min

x∈Rn
θ(x) := [x ]T1 Θ[x ]1

s.t. p(x) = 0 (∀ p ∈ Φ),
q(x) ≥ 0 (∀ q ∈ Ψ).

(3.5)

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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The optimization for all players

Denote the degree

d0 := max{ddeg(p)/2e : p ∈ Φ ∪Ψ}.

For a degree k ≥ d0, consider the the kth order moment relaxation
for (3.5)

ϑk := min
y
〈θ, y〉

s.t. y0 = 1, L(k)
p [y ] = 0 (p ∈ Φ),

Md [y ] � 0, L(k)
q [y ] � 0 (q ∈ Ψ),

y ∈ RNn
2k .

(3.6)

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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The optimization for all players

Algorithm 3.1

Let θ,Φ,Ψ be as in (3.5). Initialize k := d0.
Step 1 Solve the moment relaxation (3.6). If it is

infeasible, (3.5) has no feasible points and stop;
otherwise, solve it for a minimizer y∗.

Step 2 Let u = (y∗e1 , . . . , y
∗
en ). If u is feasible for (3.5) and

ϑk = θ(u), then u is a minimizer of (3.5).
Otherwise, let k := k + 1 and go to Step 1.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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The optimization for all players

Theorem 3.2 (J. Nie, X. Tang)

Assume the matrix Θ is a generic positive definite matrix and
Ideal[Φ] + Qmod[Ψ] is archimedean.
(i) If the polynomial optimization (3.5) is infeasible, then the

moment relaxation (3.6) must be infeasible when the order k
is big enough.

(ii) Suppose the optimization (3.5) is feasible. Let u(k) be the
point u produced in the Step 2 of Algorithm 3.1 in the kth
loop. Then u(k) converges to the unique minimizer of (3.5).
In particular, if the real zero set of Φ is finite, then u(k) is the
unique minimizer of (3.5), when k is sufficiently large.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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Numerical experiments

Example 4.1

1st player:

 min
x1∈R3

∑3
j=1 x1,j(x1,j − j · x2,j)

s.t. 1− x1,1x1,2 ≥ 0, 1− x1,2x1,3 ≥ 0, x1,1 ≥ 0,

2nd player:


min

x2∈R3

∏3
j=1 x2,j +

∑
1≤i<j≤3
1≤k≤3

x1,ix1,jx2,k +
∑

1≤i≤3
1≤j<k≤3

x1,ix2,jx2,k

s.t. 1− (x2,1)2 − (x2,2)2 = 0.

The first player’s optimization is non-convex, with an unbounded
feasible set.
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The Lagrange multipliers can be expressed as

λ1,1 = (1− x1,1x1,2) ∂f1
∂x1,1

, λ1,2 = −x1,1
∂f1
∂x1,2

,

λ1,3 = x1,1
∂f1
∂x1,1
− x1,2

∂f1
∂x1,2

, λ2 = −1
2(xT

2 ∇x2f2).

Applying Algorithm 2.5, we get four NEs:

x∗1 = (0.3198, 0.6396,−0.6396), x∗2 = (0.6396, 0.6396,−0.4264);
x∗1 = (0.0000, 0.3895, 0.5842), x∗2 = (−0.8346, 0.3895, 0.3895);
x∗1 = (0.2934,−0.5578, 0.8803), x∗2 = (0.5869,−0.5578, 0.5869);
x∗1 = (0.0000,−0.5774,−0.8660), x∗2 = −(0.5774, 0.5774, 0.5774).

Their accuracy parameters (the biggest absolute value of the
minimum of (2.7)) are respectively

7.1879 · 10−8, 3.5040 · 10−7, 4.3732 · 10−7, 6.4360 · 10−7.

It took about 30 seconds.
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If the second player’s objective becomes

−
3∏

j=1
x2,j +

∑
1≤i≤3

1≤j<k≤3

x1,ix2,jx2,k −
∑

1≤i<j≤3
1≤k≤3

x1,ix1,jx2,k ,

then there is no NE, which is detected by Algorithm 2.1. It took
around 16 seconds.
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Example 4.2

1st player:


min

x1∈R2
(2x1,1 − x1,2 + 3)x1,1x2,1

+[(2x1,2)2 + (x3,2)2]x1,2
s.t. 1− xT

1 x1 ≥ 0,

2nd player:


min

x2∈R2
[(x2,1)2 − x1,2]x2,1

+[(x2,2)2 + 2x3,2 + x1,2x3,1]x2,2
s.t. xT

2 x2 − 1 = 0, x2,1 ≥ 0, x2,2 ≥ 0,

3rd player:


min

x3∈R2
(x1,1x1,2 − 1)x3,1 − [3(x3,2)2 + 1]x3,2

+2[x3,1 + x3,2]x3,1x3,2
s.t. 1− (x3,1)2 ≥ 0, 1− (x3,2)2 ≥ 0.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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The Lagrange multipliers can be represented as

λ1,1 = −1
2(xT

1 ∇x1f1), λ2,1 = 1
2(xT

2 ∇x2f2), λ2,2 = ∂f2
x2,1
− 2x2,1λ2,1,

λ2,3 = ∂f2
x2,2
− 2x2,2λ2,1, λ3,1 = − x3,1

2
∂f3
∂x3,1

, λ3,2 = − x3,2
2

∂f3
∂x3,2

.

Applying Algorithm 2.5, we get the unique NE

x∗1 = (−0.3558,−0.9346),
x∗2 = (1.0000, 0.0000),
x∗3 = (−0.3331, 1.0000).

The accuracy parameter is 9.2310 · 10−9. It took around 9 seconds.
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Example 4.3

Consider the 2-player NEP

1st player:


min

x1∈R2
2x1,1x1,2 + 3x1,1(x2,1)2 + 3(x1,2)2x2,2

s.t. (x1,1)2 + (x1,2)2 − 1 ≥ 0,
2− (x1,1)2 − (x1,2)2 ≥ 0

2nd player:


min

x2∈R2
(x2,1)3 + (x2,2)3 + x1,1(x2,1)2

+x1,2(x2,2)2 + x1,1x1,2(x2,1 + x2,2)
s.t. (x2,1)2 + (x2,2)2 − 1 ≥ 0,

2− (x2,1)2 + (x2,2)2 ≥ 0.

X. Tang (with J. Nie) Nash Equilibrium Problems of Polynomials
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The Lagrange multipliers can be represented as (i = 1, 2):

λi ,1 = 1
2∇xi f T

i xi (2− xT
i xi ), λi ,2 = 1

4∇xi f T
i xi (1− xT

i xi ).

By Algorithm 2.5, we get the unique NE

x∗1 = (−1.3339, 0.4698), x∗2 = (−1.4118, 0.0820),

with the accuracy parameter 3.5186 · 10−8. It took around 5
seconds.
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Example 4.4
Consider the unconstrained NEP

1st player:

 min
n1∑

i=1
(x1,i )4 +

∑
0≤i≤j≤k≤n1

x1,i x1,j (x1,k+x2,i +x3,j )
(n1)2

s.t. x1 ∈ Rn1 ,

2nd player:

 min
n2∑

i=1
(x2,i )4 +

∑
0≤i≤j≤k≤n2

x2,i x2,j (x2,k+x3,i +x1,j )
(n2)2

s.t. x2 ∈ Rn2 ,

3rd player:

 min
n3∑

i=1
(x3,i )4 +

∑
0≤i≤j≤k≤n3

x3,i x3,j (x3,k+x1,i +x2,j )
(n3)2

s.t. x3 ∈ Rn3 ,

where x1,0 = x2,0 = x3,0 = 1, and n1 = n2 = n3.
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We implement Algorithm 2.5 for the cases ni = 2, · · · , 6. The
computational results are shown in the following table. For all
cases, we computed a unique NE successfully and obtained that
x∗1 = x∗2 = x∗3 (up to round-off errors).

n1 x∗1 = x∗2 = x∗3 ω∗ time
2 (−0.8410, −0.7125) −8.8291 · 10−9 0.34
3 (−0.6743,−0.6157,−0.5236) −6.6507 · 10−9 1.58

4 (−0.5950,−0.5606
−0.5097,−0.4363) −1.0577 · 10−9 16.86

5 (−0.5476,−0.5247,−0.4919,
−0.4472,−0.3860) −4.4438 · 10−9 177.63

6 (−0.5157,−0.4992,−0.4762,
−0.4457,−0.4060,−0.3534) −3.7536 · 10−9 1379.27

The time is displayed in seconds.
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Example 4.5
Consider the NEP of the electricity market problem [3]. There are
three generating companies, and the ith company possesses si
generating units. For the ith company, the power generation of his jth
generating unit is denoted by xi,j , whose maximum capacity is Ei,j ,
and the cost is 1

2 ci,j(xi,j)2 + di,jxi,j , where Ei,j , ci,j , di,j are parameters.
The electricty price is given by

φ(x) := b − a(
3∑

i=1

si∑
j=1

xi,j).

The aim of the each company is to solve the following optimization
problem:

ith player:
{

min
xi∈Rsi

1
2
∑si

j=1(ci,j(xi,j)2 + di,jxi,j)− φ(x)(
∑si

j=1 xi,j).
s.t. 0 ≤ xi,j ≤ Ei,j (j ∈ [si ]).
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The Lagrange multipliers according to the constraints
gi ,2j−1 := Ei ,j − xi ,j ≥ 0, gi ,2j := xi ,j ≥ 0 can be represented as

λi ,2j−1 = − ∂fi
∂xi ,j

· xi ,j/Ei ,j , λi ,2j = ∂fi
∂xi ,j

+ λi ,2j−1. (j ∈ [si ])

We run Algorithm 2.5 for the following setting:

si = i, a = 1, b = 10,
c1,1 = 0.4, c2,1 = 0.35, c2,2 = 0.35, c3,1 = 0.46, c3,2 = 0.5, c3,3 = 0.5,
d1,1 = 2, d2,1 = 1.75, d2,2 = 1, d3,1 = 2.25, d3,2 = 3, d3,3 = 3,
E1,1 = 2, E2,1 = 2.5, E2,2 = 0.67, E3,1 = 1.2, E3,2 = 1.8, E3,3 = 1.6.

We found the unique NE

x∗1 = 1.7184, x∗2 = (1.8413, 0.6700), x∗3 = (1.2000, 0.0823, 0.0823).

The accuracy parameter is 5.1183 · 10−7. It took about 8 seconds.
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Conclusions

This paper studies Nash equilibrium problems that are given by
polynomial functions. Algorithms 2.1 and 2.5 are proposed for
computing one or all NEs. The Lasserre type Moment-SOS
hierarchy of semidefinite relaxations are used to solve the
appearing polynomial optimization problems. Under generic
assumptions, we can compute a Nash equilibrium if it exists, and
detect the nonexistence if there is none. Moreover, we can get all
Nash equilibria if there are finitely many ones of them.
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THANK YOU!
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