Math 3C Section 2.1

Yucheng Tu

10/02/2018

1 Coordinate Plane

A plane is an infinitely extended 2-dimensional object, which is a generalization of the 1-dimensional straight line. Analogous the construction of real line, we can associate a pair of real numbers (x, y) to every point on the plane, to get the so-called Coordinate plane. The Cartesian coordinate(due to Descarte) has the following structure:

The x-axis and y-axis are perpendicular, and their intersection has coordinates $(0,0)$, and is called the origin. The points on x-axis and y-axis have coordinates $(a, 0)$ and $(0, b)$ respectively. To find the coordinate of a given point, drop two lines, one parallel to x-axis and the other parallel to y-axis, then the intersection on x-axis is the x coordinate value and the other intersection on y-axis is the y coordinate. x, y-axis divide the plane into four parts, called quadrants. The quadrant in which points have $(+,+)$ sign of their coordinates is called first quadrant, $(-,+)$ called second quadrant, $(-,-)$ called third quadrant and $(+,-)$ called fourth quadrant.

The significance of the coordinate plane is that it builds a correspondence between algebraic equations and curves on the plane. For example, equation $y=x$ corresponds to the line on which every point has equal x and y coordinates. It is a straight line pass through the origin $(0,0)$ with 45 degree slope.

Question. Which curve does the equation $x^{2}+y^{2}=1$ correspond to? Describe it precisely.
Answer. After pluging in some special points $(\pm 1,0),(0, \pm 1)$ and $(\pm \sqrt{1 / 2}, \pm \sqrt{1 / 2})$ and plotting them on $x y$-plane, we reasonably guess that the curve is a circle. It is actually a circle of radius 1 centered at the origin. Proof will be given later.

2 Distance of Two Points on $x y$-plane

One of the basic formulae tells us the distance between points in the plane given their coordinates. If point A is $\left(x_{1}, y_{1}\right)$ and point B is $\left(x_{2}, y_{2}\right)$, then their
distance is

$$
\operatorname{dist}(A, B)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

The proof is simple: dropping a vertical line from A and a horizontal line from B we denote the intersection by C, then C has coordinate (x_{1}, y_{2}). (The figure is omitted.) $A B C$ is a right triangle with hypotenuse $A B$. By Pythagorean Theorem

$$
|A B|^{2}=|B C|^{2}+|A C|^{2}
$$

and $|B C|=\left|x_{1}-x_{2}\right|,|A C|=\left|y_{1}-y_{2}\right|$ since they are horizontal and vertical respectively. Hence

$$
\operatorname{dist}(A, B)=|A B|=\sqrt{|A C|^{2}+|B C|^{2}}=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

Example. What is the distance between $(1,0)$ and $(-5,7)$?
Solution. by distance formula we have

$$
d=\sqrt{[1-(-5)]^{2}+(0-7)^{2}}=\sqrt{36+49}=\sqrt{85}
$$

Now we can see why $x^{2}+y^{2}=1$ is a unit circle centered at 0 . By the distance formula, the distance of an arbitrary point (x, y) to $(0,0)$ is $\sqrt{(x-0)^{2}+(y-0)^{2}}=$ $\sqrt{x^{2}+y^{2}}$. If x, y satisfies $x^{2}+y^{2}=1$, then $\sqrt{x^{2}+y^{2}}=1$. This means that the distance of points on the curve and $(0,0)$ is identically 1 . That defines exactly a unit circle centered at the origin.

Question. Can you describe the curve corresponding to equation

$$
(x-1)^{2}+(y-3)^{2}=5^{2}
$$

in a similar manner? (Answer. It is a circle of radius 5 centered at $(1,3)$.)

3 Perimeter and Circumference

One of the advantage of setting up coordinate is to use algebraic equations to study geometry. For a plane figure bounded by curves or straight lines, we have the concept of "total length":

Perimeter: usually used for figure with corners, like triangles and half discs
Circumference: usually used for figure with smooth boundary, like circles and ellipses.

Example: Find the perimeter of the triangle with vertices $(1,0),(0,1)$ and $(0,0)$. (Solution will be posted after the lecture!)

Let's consider the circle. What is the circumference of a circle of radius r ? We introduce a constant π to derive the formula.

Greek mathematicians proved that the circumference of the circle is proportional to its diameter: the proportional constant is called π. Hence the formula is

$$
l=\pi d=2 \pi r
$$

Example. What is the perimeter of a half disk of radius 2? (Solution will be posted after the lecture!)

