Math 3C Section 3.1

Yucheng Tu

10/02/2018

1 Function and Domain

A function is a rule that describes, given a value of variable x, how to associate it with another unique real number y. For example, $y=x+1$. The y value is also frequently refer to as "function", like in the statement: y is a function of x. The name of variable and function and is of little importance and contingent on the context. For example, $y=x+1$ and $z=t+1$ shall be considered as the same function, used in different situations: $\operatorname{dad}(y)$ is one year elder than $\operatorname{mom}(x)$, and $\mathrm{I}(z)$ am one year elder than my $\operatorname{brother}(t)$. We choose different name for variable but they expressed the same relation between ages.

The usual notation for function is $y=f(x)$, where f alone means the mapping rule. We can also think of f as a machine which takes imput x and produces output y. But a machine cannot take all kinds of imput since its capacity is limited. So we have the notion of domain of a function.

Domain of a function is the set of real numbers that can be taken as imputs by the function.

There are two cases when a function $y=f(x)$ is given:
(1) the domain of f is specified (e.g. $y=2 x+3, x$ in $[-1,1]$.)
(2) the domain of f is not specified due to laziness (e.g. $y=\sqrt{x-2}$.)

For case (1), we just need to keep in mind that the domain is an equally important part as the expression of f. Functions like

$$
f(x)=|x|, x \text { in }[-1,1] \quad \& \quad f(x)=|x|, x \text { is a real number }
$$

are completely different functions. For case (2), the principle is: domain is the largest possible set of real numbers x so that $f(x)$ can be computed to be a real number. There are 2 frequently tested patterns in exercises: square root and fractional expressions. Let's look at the following sequence of examples:

Example 1. Find the domain of $f(x)=\sqrt{x-2}$.
Solution. Since the square root of a negative number is not a real number, we need $x-2 \geq 0$. Therefore the domain is $\{x: x \geq 2\}$, or just $[2, \infty)$.

Example 2. Find the domain of $f(x)=1 /(x-2)$.
Solution. As $x-2$ appears on the denominator, it can not be 0 . So the domain is $\{x: x \neq 2\}$ or $(-\infty, 2) \cup(2, \infty)$.

Example 3. Find the domain of $f(x)=\sqrt{(x+4) /(x-2)}$.
Solution. First we see the square root and fraction patterns in the function f. The final operation is the square root, which means that

$$
\frac{x+4}{x-2} \geq 0
$$

Also we observe that $x-2 \neq 0$ since it is the denominator. Let us deal with the fraction inequality above. Since we do not know whether $x-2$ is positive or negative, we cannot multiply $x-2$ to both sides and keep the \geq sign (see the multiplicative property of inequalities), therefore we multiply $(x-2)^{2}$ to both sides. Hence we have

$$
\begin{aligned}
& \frac{x+4}{x-2} \cdot(x-2)^{2} \\
& \geq 0 \cdot(x-2)^{2} \\
&(x+4)(x-2)
\end{aligned}
$$

To solve the above inequality, we have the following simple method(it is a variation of method of graphs): solve equations $x+4=0$ and $x-2=0$, get $x=-4$ and $x=2$. Find -4 and 2 on the real line. Taking x to be a sufficiently large number, like 100 , we have $(100+4)(100-2)>0$, therefore we start with a point above the real line on the far right. Then we trace back towards the real line and hit it at $x=2$, entering the lower half of the plane. The curve comes back to the real line at -4 which is another zero point. Since there is no more zero point on the left the curve will keep above the line. Observe that on $[2, \infty)$ and $(-\infty, 4]$ the curve is above the line, the solution to the inequality is

$$
x \text { in }[2, \infty) \cup(-\infty, 4]
$$

Considering that $x \neq 2$, the domain of f is

$$
(2, \infty) \cup(-\infty, 4]
$$

Next we talk about the range of a function, which is the set of values of function when the variable varies over the domain. To find the range of a function $y=f(x)$ on some domain, it is sometimes tricky when we only know the explicit formula $f(x)$. A more convenient way is to find the graph of f and extract information directly from the graph.

2 Graph of Functions

(Please see the handwritten notes for this section.)

