Math 3C Section 3.3

Yucheng Tu

10/16/2018

1 Basic Manipulations between Two Functions

Just as four algebraic manipulations of real numbers, we can define them for functions analogously:

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (f-g)(x)=f(x)-g(x) \\
& (f \cdot g)(x)=f(x) \cdot g(x) \\
& \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
\end{aligned}
$$

The potential problem with these manipulations is that the domain of new functions are usually changed, in a non-trivial way. Let us look at the following example.

Example. Let $f(x)=\sqrt{x+4}$ and $g(x)=\sqrt{x-2}$, find the unspecified domain of f / g.

Solution. We have $(f / g)(x)=\sqrt{(x+4) /(x-2)}$ by convention, therefore the unsepcified domain is $(-\infty,-4] \cup(2, \infty)$ by the discussion in preceding lecture notes. However, the original domain of f is $[4, \infty)$ and domain of g is $[2, \infty)$, hence the domain of f / g is neither an intersection or a union of the original domains.

2 Composition of Functions

Another way of associating functions is rather unique to the realm of functions, unlike basic manipulations. To composite 2 functions means to form a stream line of different machines, so that the output of the first function automatically becomes an input of the second function. We define $f \circ g$ as follows.

$$
(f \circ g)(x)=f(g(x))
$$

If there are 3 or more functions we just add each function in some order like

$$
(f \circ g \circ h)(x)=f(g(h(x)))
$$

Just remember that the closest function acts first, hence $(h \circ g \circ f)(x)=$ $h(g(f(x)))$.

Order of functions is an essential factor of the outcome of composition. For example, if $f(x)=x^{2}+1$ and $g(x)=2 x+4$, then $(f \circ g)(x)=4 x^{2}+16 x+17$ and $(g \circ f)(x)=2 x^{2}+6$.

Another important but implicit change that undergoes during the composition is the domain of functions. For example $f(x)=\sqrt{x-1}$ and $g(x)=2 x$, then $(f \circ g)(x)=\sqrt{2 x-1}$. The domain of $f \circ g$ is not inherited directly from the domain of g, but is shrunk from the whole real line to $[1 / 2, \infty)$.

The composition of functions resembles product of real numbers in many perspectives besides the commutativity (that $f \circ g \neq g \circ f$ generally). But we have associatitvity:

$$
(f \circ g) \circ h=f \circ(g \circ h)
$$

To understand it take the following example, $f(x)=x+1, g(x)=2 x+5$ and $h(x)=x^{2}$. Then we have

$$
(f \circ g)(x)=2 x+6, \quad[(f \circ g) \circ h](x)=2 x^{2}+6
$$

and we also have

$$
(g \circ h)(x)=2 x^{2}+5, \quad[f \circ(g \circ h)](x)=2 x^{2}+6
$$

We also have functions that act like " 0 " or " 1 " as in the multiplication of real numbers. They are constant functions and identity function. A constant function is a function with a constant value, i.e. $f(x)=c$ for all x in the domain of f. One can see that when making composition with any other functions, like $g(x)=x^{2}, x^{3}+2 x+9$ and so on, we have

$$
(f \circ g)(x)=c, \quad(g \circ f)(x)=g(c)
$$

both $f \circ g$ and $g \circ f$ are constant functions. That is like 0 times everything is just 0 . The identity function is the unique $f(x)=x$. When making compositions we have

$$
(f \circ g)(x)=(g \circ f)(x)=g(x)
$$

so compostion with f does not change the function g. That is like 1 times everything does not make any difference.

3 Decomposition of functions

This is an inverse problem of composition of functions, that is if we have a complicated function, how can we write it as a composition of several simple functions. For example: $T(x)=\frac{4}{5+x^{2}}$ To decompose T into $f \circ g \circ h$, we just observe that from x to $T(x)$, we did $x \rightarrow x^{2} \rightarrow x^{2}+5 \rightarrow \frac{4}{x^{2}+5}$, therefore $h(x)=x^{2}, g(x)=x+5$ and $f(x)=4 / x$.

