Math 3C Section 3.4 \& 3.5

Yucheng Tu

10/22/2018

1 Inverse Functions

The study of inverse functions begins with the study of general formula of equations. If we consider the simple equation $2 x=6$, it is obvious that $x=3$ is the solution as we can divide both sides by 2 . If we generalize that method to study a family of equations $2 x=a$ (a is any given real number), we have $x=a / 2$. It is convenient to think of that relation as a determination of x in terms of a. If $a=2 x$ is regarded as a function of x, then $x=a / 2$ is called the inverse function with variable a.

Definition. For a given function $y=f(x)$, if there is a function $y=g(x)$ such that $g(f(x))=x$ for all x in the domain of f, then g is called the inverse function of f, denoted as $g=f^{-1}$.

Roughly speaking, the inverse function is a function which reverse the role of output and input for the original function. From the definition above we have the following composition rule:

$$
f^{-1} \circ f=\mathrm{id}
$$

where id is the identity function $\operatorname{id}(x)=x$.

1.1 Invertibility of functions

Remember that a function $y=f(x)$ associates a unique $f(x)$ to every x in its domain. But sometimes different x values correspond to the same $f(x)$, i.e. $f\left(x_{1}\right)=f\left(x_{2}\right)$ holds for some $x_{1} \neq x_{2}$.

For example, the absolute value function $y=|x|$ takes both $x_{1}=-1$ and $x_{2}=1$ to 1 . The quadratic function $y=x^{2}$ takes both $x_{1}=-2$ and $x_{2}=2$ to 4 . If we try to find the inverse of $f(x)=x^{2}$, the major difficulty is to define the values of $f^{-1}(1), f^{-1}(4)$ and so on, since they are not unique for the preceding reason. In this case we say such a function is not invertible. What concept do we use to characterize the invertibility of functions in general?

From the discussion above we know that an invertible function must have the following property: one x corresponds to exactly one y, and one y corresponds to exactly one x. More precisely, we use the hypothetical statement: if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. These functions are called "1-1" functions.

By the definition of function there is no 1-many functions. But there could be many- 1 functions, such as constant functions and periodic functions. To characterize the "1-1" property geometrically we introduce the "monotonicity" of functions. We have the following observation.

A 1-1 function must be either increasing or decreasing.

The reason is simple: if the function has a turning point then it comes back to a value previously achieved. Look at the following graphs.

An increasing function satisfies the following property: whenever $x_{1} \leq x_{2}$, we have $f\left(x_{1}\right) \leq f\left(x_{2}\right)$. For a decreasing function: whenever $x_{1} \leq x_{2}$, we have $f\left(x_{1}\right)>f\left(x_{2}\right)$. These properties guarantee the 1-1 property, as any horizontal line only intersects the graph at most one point. Hence we have the following conclusion: every monotonic function is invertible.

1.2 Formula of Inverse Functions

Now we consider a practical problem: to find the inverse of a given function $y=f(x)$. The essential step is to express x in terms of y.

Example 1. Let $f(x)=\sqrt{\frac{x+3}{x-4}}$, find the formula of f^{-1}.
Solution. See the solution of practice midterm 1.

Example 2. Let $f(x)=x^{2}+x+6$ with the domain $(0,+\infty)$. Find the formula of f^{-1}.
Solution. Let $y=x^{2}+x+6$ and we first formally solve x in terms of y. Using the quadratic formula for equation

$$
x^{2}+x+6-y=0
$$

we have

$$
x=\frac{-1 \pm \sqrt{(-1)^{2}-4(6-y)}}{2}=-\frac{1}{2} \pm \frac{\sqrt{4 y-23}}{2}
$$

However we have \pm which makes the expression non-unique. Hence we need to use the domain of f to find out whether to choose + or - . The easiest way is to plug in $x=1$ into $f(x)$. Why? Because $x=1$ is inside the domain of f and relatively easy to compute. We have $f(1)=8$. Let's check whether + or works when $x=1$ and $y=8$ are plugged into the formula above.

$$
1=-\frac{1}{2} \pm \frac{\sqrt{4 \cdot 8-23}}{2}=-\frac{1}{2} \pm \frac{3}{2}
$$

Therefore + is desired. Hence we have

$$
f^{-1}(x)=-\frac{1}{2}+\frac{\sqrt{4 x-23}}{2}
$$

1.3 Graph of Inverse Functions

Using graphs instead of formulae, we can get a better idea of the behavior of inverse functions. If A point in the form (x, y) is on the graph of f, then (y, x) is the corresponding point on the graph of f^{-1}. To transform (x, y) into (y, x), like $(1,2) \rightarrow(2,1)$ and $(-3,5) \rightarrow(5,-3)$, we just flip the whole plane across the line $y=x$. Therefore the graph of f^{-1} is the flipping of graph of f across $y=x$.

From the picture we can see two important conclusions:
(1) If the original function is increasing (or decreasing), then its inverse is also increasing (or decreasing).
(2) The domain of f is the range of f^{-1}, and the range of f is the domain of f^{-1}.

