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1 Integer Exponents

We are familiar with numbers expressed in an exponential form: 21, 22, 23, 24, 25 · · · ,
and their generalization to arbitrary base x1, x2, x3, x4, x5 · · · . The basic iden-
tity is

xm · xn = xm+n for natural numbers m,n

Now we want to extend the definition of xm to where m can be negative integers.
First we define x0 = 1 when x 6= 0. Then we can see that

xm · x−m = xm+(−m) = x0 = 1

Therefore

x−m =
1

xm
.

We do not try to define 00, not because it will violate the our familiar identities,
but for some deeper reasons concerning limits and convergence.

Another useful identity is

(xy)m = xm · ym for integer m

Using these identities we can simply some complex exponential expressions.

Example. Simplify the following expression.((
x−3y4

)2
x−9y3

)2

Solution.((
x−3y4

)2
x−9y3

)2

=

(
x−3·2y4·2

x−9y3

)2

=

(
x−6y8

x−9y3

)2

=
(
x3y5

)2
= x6y10

The general rule of simplification is to simplify inner parenthesis first.
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1.1 Graph of Power Functions

We call x, x2, x3, . . . , xn, . . . power functions of x. They play as building blocks
of more complicated functions like polynomials, rational functions, and even
exponential and trigonometric functions (using infinite sum of powers). It is
very important to understand the behavior of power functions. First we study
their behavior when x is large.

Generally speaking, when n is an even number, xn approaches positive in-
finity when x approaches either −∞ or ∞. When n is an odd number then xn

approaches −∞ as x → −∞ and xn → ∞ as x → ∞. These facts can be seen
from the following graphs.
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From the graphs we can see that when n is positive, the growth of function
xn is much faster than that of xn−1. We can see as well the decay of x−n is
much faster than x−n+1. Another observation is that if n is an odd number,
then xn and x−n are both odd functions; if n is an even number, then xn and
x−n are both even functions.

2 Polynomials

Polynomials are functions defined as

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

where an, an−1, · · · , a1, a0 are indexed coefficients. They can be any real num-
bers (including 0). Hence polynomials are natural generalization of power func-
tions xn, xn−1, · · · , x. Because of the difference of exponents in the components
of a polynomial, each single term behaves uniquely, hence making the behavior
of their sum well more complex to be tracked. We shall look at two notions
associated with every polynomial: degrees and zeros.
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2.1 Degree of Polynomials

The degree of a polynomial p(x) is the largest exponent in p. Usually we write
an polynomial either in ascending exponents or descending exponents, so it is
easy to recognize. For example, if p(x) = 2x5 − 3x3 + 1, then deg(p) = 5. If
p(x) = 1, then deg(p) = 0 since constant could be regarded as of exponent 0.

Addition and Subtraction
For the addition and subtraction of polynomials we do have the following con-
clusion about the change of degrees:

deg(p + q) ≤ max{deg(p),deg(q)}.

deg(p− q) ≤ max{deg(p),deg(q)}.
For example p(x) = x2 + x and q(x) = −x2 + x will give sum (p + q)(x) = 2x,
hence the degree can get lower. If p(x) = x2 + x and q(x) = x2 − x will give
sum (p+ q)(x) = 2x2 where the degree is preserved, therefore we used ≤ in the
previous formula. For the second conclusion we just note that −q(x) has the
same degree as q(x), so the subtraction obeys the same rule as addition.

Multiplication and Composition
For multiplication of polynomials, i.e. (p · q)(x) = p(x) · q(x), the degree obeys
a simpler rule:

deg(p · q) = deg(p) + deg(q).

This property comes from the fact xm ·xn = xm+n, hence the product of leading
terms of p and q results in an addition of exponents. For example, if p(x) = x2+1
and q(x) = x5 + 3x3 + 2, then (p · q)(x) = x7 + 4x5 + 3x3 + 2x2 + 2, where the
degrees 7 = 2 + 5.

For composition of polynomials, the degrees also obey a simple product rule:

deg(p ◦ q) = deg(p) · deg(q).

This comes from the compounded exponents formula (xm)n = xmn. Using the
same example as above, (p◦q)(x) = (x5 +3x3 +2)2 +1 = (x5)2 + · · · = x10 + · · ·
whose degree is 10 = 2 · 5.

2.2 Zeros and Factorization of Polynomials

Like the study of large numbers relies on the fact that they can be factorized
into product of smaller prime numbers, like

6469693230 = 2× 3× 5× 7× 11× 13× 17× 19× 23× 29,

it is meaningful to ask whether a large polynomial p(x) can be written as a
product of lower degree ones. For example

x7+4x6+4x5+10x4+22x3+4x2+9x+18 = (x+2)(x+3)(x2−x+1)(x3+2x+3)
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can make life a lot easier. Are there nice ways to determine the factors of a
given polynomial? To avoid trivial stuffs like x2 + x + 1 = 1 · (x2 + x + 1), let’s
give a definition first.

Defintion. A polynomial q(x) is called a factor of polynomial p(x) if we can
find another polynomial r(x) such that p(x) = q(x) ·r(x). To factorize p(x) we
try to find q(x) and r(x) such that p(x) = q(x)·r(x) and deg(q),deg(r) < deg(p).

To restrict the degrees we want to make sure that p(x) is split into real smaller
polynomials. That can be interpreted, from a practical perspective, as pull out
at least a degree 1 polynomial like x − a from p(x). How can we fulfill that?
Here comes the notion of zeros and a theorem that relates it to a factorization
of polynomials.

Defintion. If p(a) = 0 for a real number a, then a is called a zero of p. In
other words, the zeros of p is the set of solutions to the equation p(x) = 0.

Example. p(x) = x2− 1 and q(x) = x2 + x+ 1, what are the zeros of p and q?

Solution. Setting p(x) = 0 we have x2 − 1 = 0, whose solutions are 1 and −1,
they are zeros of p. Setting q(x) = 0 we have x2 + x + 1 = 0. By the quadratic
formula applied with a = b = c = 1, we find

√
b2 − 4ac =

√
−3 is not a real

number. Therefore q has no real zeros.

Now here is a theorem of factorization:

Theorem. If a is a zero of p, then x − a is a factor of p(x). Conversely, if
x− a is a factor of p(x) then a is a zero of p.

We can go back to the previous example to see how to apply this theorem. After
obtaining 1,−1 as zeros of x2− 1, we get its factors x− 1 and x− (−1) = x+ 1:

p(x) = (x− 1)(x + 1)

But there is no way to factorize q(x) with real polynomials: q has no real zeros.

We conclude this section by a review of factorizing 3 types of polynomials.

Type 1. (Substitutions) Factorize p(x) = x6 − 8x3 + 15 and q(x) = x4 −
2x2 − 15.

Solution. Observe that p(x) has only x6, x3, x0 terms, if we replace x3 by y, then
p(x) = y2− 8y + 15. This is a quadratic polynomial, which can be factorized as
(y − 3)(y − 5). Plugging y = x3 back we have

p(x) = (x3 − 3)(x3 − 5).
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Similar technique can also be applied to q(x) (let y = x2).

Type 2. (Special Formulae) Here we present some useful formulae:

xn − yn = (x− y)(xn−1 + xn−2y + xn−3y2 · · ·+ x2yn−3 + xyn−2 + yn−1)

xn + yn = (x + y)(xn−1 − xn−2y + xn−3y2 · · ·+ x2yn−3 − xyn−2 + yn−1)

The formula for xn + yn only applies for odd number n. Here is a really special
factorization for x4 + y4:

x4 + y4 = (x2 −
√

2xy + y2)(x2 +
√

2xy + y2)

which does not resemble the formulae above.

Type 3. (Finding Zeros) Some polynomials have simple zeros. For example
p(x) = x3 − 2x2 + 4x − 3 has a zero a = 1, therefore x − 1 is a factor of p(x).
To find the remaining factors, we divide p(x) by x−1, through long division we
have

x3 − 2x2 + 4x− 3 = (x− 1)(x2 − x + 3)

and it turns out that x2 − x + 3 cannot be factorized as (x − a)(x − b) (think
about it!), hence that is the best we can do.
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