Math 3C Section 4.3

Yucheng Tu

11/10/2018

1 Rational Functions

Remember that we have talked about few algebraic manipulations between polynomials: addition(subtraction), multiplication and composition. A common feature of these manipulations is that the result preserves to be a polynomial. However, if we take the quotient of polynomials, i.e. $p(x) / q(x)$, the result is no longer a polynomial in general. It is called a rational function which deserves some independent treatment.

Suppose we have the following rational function

$$
r(x)=\frac{x^{2}+1}{x}
$$

Then it is quite obvious that we can make some simplification:

$$
r(x)=\frac{x^{2}}{x}+\frac{1}{x}=x+\frac{1}{x}
$$

to separate the polynomial part x and non-reducible fractional part $1 / x$. In general this is usually the first step to get to know a certain rational function. We wish to write every rational function $p(x) / q(x)$ in the following form:

$$
G(x)+\frac{R(x)}{q(x)}
$$

where G, R are polynomials, especially we require that $\operatorname{deg}(R) \leq \operatorname{deg}(q)$. This resembles the simplification of numerical fractions such as $111 / 13=8+7 / 13$, hence we call $G(x)$ the quotient and $R(x)$ the remainder. As the long division of large whole numbers, we can use long division of polynomials and calculate the following example:

Example. Write $\frac{x^{6}+3 x^{3}+1}{x^{2}+2 x+5}$ as $G(x)+\frac{R(x)}{q(x)}$.
Solution. After long division(hard to realize in Latex!) we get

$$
x^{6}+3 x^{3}+1=\left(x^{4}-2 x^{3}-x^{2}+15 x-25\right)\left(x^{2}+2 x+5\right)-25 x+126
$$

Therefore $G(x)=x^{4}-2 x^{3}-x^{2}+15 x-25$ and $R(x)=-25 x+126$. Hence the answer is

$$
\frac{x^{6}+3 x^{3}+1}{x^{2}+2 x+5}=x^{4}-2 x^{3}-x^{2}+15 x-25+\frac{-25 x+126}{x^{2}+2 x+5} .
$$

1.1 Domain of Rational Functions

Rational functions usually have smaller domains than the whole real line. This is due to the fact that the denominator $q(x)$ should not be zero, therefore the zeros of q are excluded from the domain. Hence to find the domain of a rational function $r(x)=p(x) / q(x)$, one only need to find the zeros of q.

Example. Find the domains of

$$
r_{1}(x)=\frac{x^{6}+3 x^{3}+1}{x^{2}+2 x+5} \quad \text { and } \quad r_{2}(x)=\frac{x^{6}+3 x^{3}+1}{x^{2}-2 x-3}
$$

Solution. Set $x^{2}+2 x+5=0$ we have $b^{2}-4 a c=2^{2}-4 \cdot 5=-16<0$. Therefore $x^{2}+2 x+5$ has no real zero, hence the domain of r_{1} is simply all real numbers. Set $x^{2}-2 x-3=0$ we have roots $x=3$ or $x=-1$. Hence the domain of r_{2} is

$$
(-\infty,-1) \cup(-1,3) \cup(3, \infty) \quad \text { or } \quad\{x \neq-1 \text { and } x \neq 3\}
$$

1.2 Behavior of Rational Functions as $x \rightarrow-\infty$ or ∞

The behavior of rational functions is more complex than polynomials since $q(x)$ can be arbitrarily close to 0 despite that it can not be exactly 0 . Discussing general behavior of rational functions can be more confusing than enlightening. We use the following example to introduce a conclusion about what could happen when $x \rightarrow-\infty$ or ∞.

Example. Discuss the behavior of

$$
r_{1}(x)=\frac{x^{2}+1}{x} \quad \text { and } \quad r_{2}(x)=\frac{x}{x^{2}+1}
$$

as $x \rightarrow-\infty$ or ∞.

Solution. For r_{1} note that we can write it as $x+1 / x$. As $x \rightarrow-\infty$, the first term $x \rightarrow-\infty$ while the second term $1 / x \rightarrow 0$. Hence the sum $x+1 / x \rightarrow$ $-\infty+0=-\infty$. Similar arguments show that when $x \rightarrow \infty, x+1 / x \rightarrow \infty$.

For r_{2}, note that $r_{2}(x)=1 / r_{1}(x)$, hence as discussed the behavior of $r_{1}(x)$, we see $r_{2}(x)=1 / r_{1}(x) \rightarrow 1 / \infty=0$.

From the example we see that if $\operatorname{deg}(p)>\operatorname{deg}(q)$, then after the division the quotient $G(x)$ will be a polynomial of degree at least 1 , and the behavior of
$p(x) / q(x)$ is determined by the behavior of $G(x)$ when $x \rightarrow \infty$ or $-\infty$. If $\operatorname{deg}(p)<\operatorname{deg}(q)$ then it behaves like the reciprocal of the former case, i.e. $p(x) / q(x) \rightarrow 1 / \infty=0$.

