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1 Real Exponents

In Chapter 4 we defined what is called integer exponents and their algebraic
properties. Now we want to extend the range of exponents to the largest set of
numbers we know: all real numbers. Let us first discuss a relatively easier case:
rational exponents, i.e. the meaning of x

m
n where m, n are integers.

1.1 Rational Exponents

To get a definition of x
m
n , it is enough to define x

1
n because we can use the

product of exponent property to get

x
m
n = x

1
n ·m =

(
x

1
n

)m
.

To see what should x
1
n mean, we take n copies of x

1
n and make a product:

x
1
n · x 1

n · · ·x 1
n︸ ︷︷ ︸

n copies

=
(
x

1
n

)n
= x

1
n ·n = x

Therefore we can define x
1
n to be n

√
x, the n-th radical of x. Hence we are able

to see
x

m
n =

(
x

1
n

)m
= ( n
√
x)m

or alternatively,

x
m
n =

(
xm
) 1

n = n
√
xm.

Usually the first way is better for computation, for example:

Example. Compute 25
3
2 .

Solution. We calculate in both ways.

25
3
2 =

(
253
) 1

2 =
√

15625 = 125

25
3
2 =

(
25

1
2

)3
=
(√

25
)3

= 53 = 125

It is obvious that the second way is easier without using calculators.
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Let us take a look at a somewhat unexpected fact with taking square root:
sometimes it does not make things worse.

Example. Simplify (7 + 4
√

3)1/2.
Solution. Making use of the complete square formula (a+ b)2 = a2 + b2 + 2ab,
we have

a+ b = (a2 + b2 + 2ab)
1
2 .

Therefore if we can match a2 + b2 with 7 and 2ab with 4
√

3 then we are done.
It turns out that a = 2 and b =

√
3 works. Hence we have

2 +
√

3 = (22 + (
√

3)2 + 2 · 2 ·
√

3)
1
2 = (7 + 4

√
3)

1
2 .

1.2 Irrational Exponents

To define xα where α is an irrational number, i.e. α cannot be represented as
m/n (m and n are integers), we can not resort to naturally defined operations
like self multiplication or radicals. But through approximation by quantities de-
fined in the preceding sections we can still make sense of irrational exponents.
The core idea is to use rational numbers to approximate irrational numbers to
an arbitrary precision.

Fact. Every irrational number α can be represented as a decimal fraction with
infinitely many digits. Hence if we truncate it at the n-th digit we get a finite
decimal fraction which approximates α within an error of 10−n.

Example. π = 3.141592653589793238... is a well-known irrational number, and
there are infinitely unknown digits of π. However we can approximate π by the
following sequence:

3, 3.1, 3.14, 3.141, 3.1415, ... −→ π

whose error is approaching 0 as:

0.14159 · · · , 0.04159 · · · , 0.00159 · · · , 0.00059 · · · , 0.00009 · · · , ... −→ 0

In the approximating sequence each number is a rational number

3

1
,

31

10
,

314

100
,

3141

1000
,

31415

10000
, ... −→ π

Therefore we say π can be approximated by a sequence of rational numbers to
arbitrary precision.

Definition. We define the irrational exponents xπ as

xπ is the limit of x3, x3.1, x3.14, x3.141, x3.1415, · · ·
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And similarly if α is an arbitrary irrational number, write α = a.bcdefg..., then

xα is the limit of xa, xa.b, xa.bc, xa.bcd, xa.bcde, · · ·

Because of this complicated definition, we usually do not compute irrational
exponents by hand. Just keep in mind that once you accept the definition, the
algebra of these numbers are the same as integer and rational exponents. Hence

xα · xβ = xα+β ,
(
xα
)β

= xαβ , x−α =
1

xα
holds for all real x and α.

2 Exponential Functions

The preceding discussion leads to a perfectly defined function:

f(x) = ax a > 0

where a is a given positive real number and the variable x can be any real
number. This function is called exponential function with base a.

Question. Why should the base a be a positive number?
Answer. Let us take a = −1 which represents negative numbers. Then (−1)

1
2

is simply
√
−1, not a real number. Hence there is no definition at x = 1

2 . In
other words the function f(x) = (−1)x cannot be defined for all real numbers
x. A similar situation happens when a = 0, since 00 is undefined. These are
pathological so we exclude them from the normal exponential functions.

2.1 Graph of Exponential Functions

To discuss the graph of exponential functions, we need to understand their
monotonicity (increasing or decreasing) first. If a > 1, then from the following
fact we observe that f(x) = ax should be increasing:

1, a, a2, a3, a4, · · · is an increasing sequence

since each term is a(> 1) times the preceding term, hence greater than the pre-
ceding one. When 0 < a < 1, then the sequence above is decreasing, since each
term is a(< 1) times the preceding one. Therefore generally we can expect that
ax is increasing function when a > 1 and decreasing function when a < 1.

Another notable property of the exponential functions are their growth rate.
Compare the following table:

x 1 2 3 4 5 6 7 8 9 10 11 12
x2 1 4 9 16 25 36 49 64 81 100 121 144
2x 2 4 8 16 32 64 128 256 512 1024 2048 4096
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The exponential function 2x grows much faster than the power function x2 when
x is large. Having these properties in mind we have the following graph on the
left:

y = 2x

y = x2
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Exponential Functions, a > 1

In the graph on the right we can see the relation between f(x) = ax and
g(x) =

(
1
a

)x
when a > 1. Using 1

a = a−1 we can see that

g(x) =
(1

a

)x
=
(
a−1

)x
= a−x = f(−x)

hence the graph of f and g are actually symmetric with respect to y-axis.

Here are some conclusion about the graphs of exponential functions with base
a > 1:
(1) If x > 0 then the graph increases rapidly as x→∞;
(2) If x < 0 then the graph decays rapidly to 0 as x→ −∞;
(3) (0, 1) is always on the graph.

And also about the graphs of exponential functions with base 0 < a < 1:
(1) If x > 0 then the graph decays rapidly to 0 as x→∞;
(2) If x < 0 then the graph increases rapidly as x→ −∞;
(3) (0, 1) is always on the graph.
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