MATH180A: Introduction to Probability

This week:

homework #4 (due Friday, Nov 1, 11:59pm)

Today: ASV 4.3

Next: ASV 4.4

www.math.ucsd.edu/~ynemish/180a
CLT for the binomial

Thm (CLT for binomial). Let $S_n \sim B(n, p)$, $a < b$.

Then

$$
\lim_{{n \to \infty}} P\left(a \leq \frac{S_n - np}{\sqrt{np(1-p)}} \leq b \right) = \Phi(b) - \Phi(a)
$$

For the average $\frac{S_n}{n}$

$$
P\left(\frac{a \sqrt{p(1-p)}}{\sqrt{n}} \leq \frac{S_n}{n} - p \leq \frac{b \sqrt{p(1-p)}}{\sqrt{n}} \right) \approx \Phi(b) - \Phi(a)
$$

Rule of thumb:

$$
np(1-p) > 10
$$

Thm (LLN for binomial). $S_n \sim B(n, p)$, Then for any $\varepsilon > 0$

$$
\lim_{{n \to \infty}} P\left(\left| \frac{S_n}{n} - p \right| < \varepsilon \right) = 1
$$
Confidence intervals. Motivation

Independent trials, success rate p (unknown)

$S_n = \text{number of successes after } n \text{ trials}$

$S_n \sim B(n, p)$. E.g.: (biased?) coin tossed n times

LLN: \[\frac{S_n}{n} \to p, n \to \infty \text{ (in probability)} \]

If n is big, $\frac{S_n}{n}$ is close to p.

Usually, we don't know p, but we can get a realization of S_n (flipping coin) for finite n.

What can we say about p?
Confidence intervals. Set-up

CLT: interval \((-a, a)\)

\[
P\left(-a\sqrt{\frac{p(1-p)}{n}} \leq \hat{p} - p \leq a\sqrt{\frac{p(1-p)}{n}} \right) \approx 2\Phi(a) - 1
\]

Questions:

1) For fixed \(n\), find \(\varepsilon\) s.t.

\[
P(1\hat{p} - p \leq \varepsilon) \geq \gamma
\]

2) For fixed \(\varepsilon\), find \(n\) s.t.

\[
P(1\hat{p} - p \leq \varepsilon) \geq \gamma
\]
Confidence intervals

\[P(p \in [\hat{p} - \varepsilon, \hat{p} + \varepsilon]) \geq \gamma \]

\([\hat{p} - \varepsilon, \hat{p} + \varepsilon] \) - \(\gamma \)-confidence interval for \(p \)

\(\hat{p} \) is r.v. \(\Rightarrow \) interval is random.

Take some realization of \(\hat{p} \) (a number), say \(\hat{p}_* \)

\([\hat{p}_* - \varepsilon, \hat{p}_* + \varepsilon] \) - \(\gamma \)-confidence interval of \(p \)

\(\hat{p}_* \) \(\rightarrow \) estimate of \(p \)
Confidence intervals. Computations

• What with unknown p in formula?

$$P\left(|\hat{p} - p| \leq \frac{a \sqrt{p(1-p)}}{\sqrt{n}} \right) \approx 2\Phi(a) - 1 = \gamma$$

The γ-confidence interval can be taken as

with

and
Confidence intervals. Example 1 (fixed n)

Flip a coin 10000 times.
Number of Heads is 5370.
Compute a 99%-confidence interval for $p = P(\text{Heads})$
Confidence intervals. Example 2 (fixed accuracy)

Flip a potentially biased coin. How many times should we repeat the experiment to be able to compute a 95%-confidence interval for \(p = P(\text{Heads}) \) of length 0.01?

<table>
<thead>
<tr>
<th>(Z)</th>
<th>0.00</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.5000</td>
<td>0.5040</td>
<td>0.5080</td>
<td>0.5120</td>
<td>0.5160</td>
<td>0.5199</td>
<td>0.5239</td>
<td>0.5279</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5398</td>
<td>0.5438</td>
<td>0.5478</td>
<td>0.5517</td>
<td>0.5557</td>
<td>0.5596</td>
<td>0.5636</td>
<td>0.5675</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5793</td>
<td>0.5832</td>
<td>0.5871</td>
<td>0.5910</td>
<td>0.5948</td>
<td>0.5987</td>
<td>0.6026</td>
<td>0.6064</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6179</td>
<td>0.6217</td>
<td>0.6255</td>
<td>0.6293</td>
<td>0.6331</td>
<td>0.6368</td>
<td>0.6406</td>
<td>0.6443</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6554</td>
<td>0.6591</td>
<td>0.6628</td>
<td>0.6664</td>
<td>0.6700</td>
<td>0.6736</td>
<td>0.6772</td>
<td>0.6808</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6915</td>
<td>0.6950</td>
<td>0.6985</td>
<td>0.7019</td>
<td>0.7054</td>
<td>0.7088</td>
<td>0.7123</td>
<td>0.7157</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7257</td>
<td>0.7291</td>
<td>0.7324</td>
<td>0.7357</td>
<td>0.7389</td>
<td>0.7422</td>
<td>0.7454</td>
<td>0.7486</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7580</td>
<td>0.7611</td>
<td>0.7642</td>
<td>0.7673</td>
<td>0.7704</td>
<td>0.7734</td>
<td>0.7764</td>
<td>0.7794</td>
</tr>
<tr>
<td>0.8</td>
<td>0.7881</td>
<td>0.7910</td>
<td>0.7939</td>
<td>0.7967</td>
<td>0.7995</td>
<td>0.8023</td>
<td>0.8051</td>
<td>0.8078</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8159</td>
<td>0.8186</td>
<td>0.8212</td>
<td>0.8238</td>
<td>0.8264</td>
<td>0.8289</td>
<td>0.8315</td>
<td>0.8340</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8413</td>
<td>0.8438</td>
<td>0.8461</td>
<td>0.8485</td>
<td>0.8508</td>
<td>0.8531</td>
<td>0.8554</td>
<td>0.8577</td>
</tr>
<tr>
<td>1.1</td>
<td>0.8643</td>
<td>0.8665</td>
<td>0.8686</td>
<td>0.8708</td>
<td>0.8729</td>
<td>0.8749</td>
<td>0.8770</td>
<td>0.8790</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8849</td>
<td>0.8869</td>
<td>0.8888</td>
<td>0.8907</td>
<td>0.8925</td>
<td>0.8944</td>
<td>0.8962</td>
<td>0.8980</td>
</tr>
<tr>
<td>1.3</td>
<td>0.9032</td>
<td>0.9049</td>
<td>0.9066</td>
<td>0.9082</td>
<td>0.9099</td>
<td>0.9115</td>
<td>0.9131</td>
<td>0.9147</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9192</td>
<td>0.9207</td>
<td>0.9222</td>
<td>0.9236</td>
<td>0.9251</td>
<td>0.9265</td>
<td>0.9279</td>
<td>0.9292</td>
</tr>
<tr>
<td>1.5</td>
<td>0.9332</td>
<td>0.9345</td>
<td>0.9357</td>
<td>0.9370</td>
<td>0.9382</td>
<td>0.9394</td>
<td>0.9406</td>
<td>0.9418</td>
</tr>
<tr>
<td>1.6</td>
<td>0.9452</td>
<td>0.9463</td>
<td>0.9474</td>
<td>0.9484</td>
<td>0.9495</td>
<td>0.9505</td>
<td>0.9515</td>
<td>0.9525</td>
</tr>
<tr>
<td>1.7</td>
<td>0.9554</td>
<td>0.9564</td>
<td>0.9573</td>
<td>0.9582</td>
<td>0.9591</td>
<td>0.9599</td>
<td>0.9608</td>
<td>0.9616</td>
</tr>
<tr>
<td>1.8</td>
<td>0.9641</td>
<td>0.9649</td>
<td>0.9656</td>
<td>0.9664</td>
<td>0.9671</td>
<td>0.9678</td>
<td>0.9686</td>
<td>0.9693</td>
</tr>
<tr>
<td>1.9</td>
<td>0.9713</td>
<td>0.9719</td>
<td>0.9726</td>
<td>0.9732</td>
<td>0.9738</td>
<td>0.9744</td>
<td>0.9750</td>
<td>0.9756</td>
</tr>
<tr>
<td>2.0</td>
<td>0.9772</td>
<td>0.9778</td>
<td>0.9783</td>
<td>0.9788</td>
<td>0.9793</td>
<td>0.9798</td>
<td>0.9803</td>
<td>0.9808</td>
</tr>
</tbody>
</table>
Confidence intervals. Polling

Without going into details (see Example 4.14)

Remark 4.16

Part of population (unknown p) prefers product A/
supports candidate B/...

We interview n individuals and k of them give
positive answer (about product/candidate).

What can we say about p?

Fix confidence level γ (often $\gamma = 0.95$)

Again, $\hat{p} = \frac{k}{n}$ is the estimate of p.
Confidence interval. Exercise (rock vs rap)

You ask 400 randomly chosen people living in SD if they prefer rock or rap. 230 reply that they prefer rock music. Give a 99% confidence interval for the part of the population that prefers rock.
Random walk
CLT. Proof for binomial

Fact 1. (Stirling's formula) As $n \to \infty$, $n! \sim n^n e^{-n} \sqrt{2\pi n}$

Fact 2. For $|x| < 1$, $\log(1+x) = x - \frac{x^2}{2} + O(x^3)$

Proof of CLT. $P\left(a \leq \frac{S_n - np}{\sqrt{npq}} \leq b\right) = P\left(a\sqrt{npq} + np \leq S_n \leq b\sqrt{npq} + np\right)$

$$= \sum_{a\sqrt{npq} + np \leq k \leq np + b\sqrt{npq}} P(S_n = k)$$

$$P(S_n = k) =$$
\[
\left(\frac{n^p}{k} \right)^k \left(\frac{n^q}{n-k} \right)^{n-k} =
\]

Take log:

Take exp:
Law of large numbers (LLN)

Let X_1, \ldots, X_n, \ldots be independent and identically distributed and let $E(X_i) = \mu \in \mathbb{R}$. Then for any $\varepsilon > 0$

$$\lim_{n \to \infty} P \left(\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| < \varepsilon \right) = 1$$

Let $X_i \sim \text{Ber}(p)$.

Thm (LLN for binomial). $S_n \sim \text{B}(n, p)$. Then for any $\varepsilon > 0$

$$\lim_{n \to \infty} P \left(\left| \frac{S_n}{n} - \mu \right| < \varepsilon \right) = 1$$

Binomial today, general later.
Proof