Today: ASV 8.4

Next: ASV 9.1-9.2

This week:

- Thanksgiving
- homework 7 due today 11:59 pm
Moment generating function of a sum of independent r.v.'s

Let X, Y be two independent r.v.'s, defined on the same probability space. Then the m.g.f. of $X + Y$

$$E(e^{t(X+Y)}) = E(e^{tX} e^{tY}) = \text{indep} \ E(e^{tX}) E(e^{tY}) \Rightarrow$$

$$M_{X+Y}(t) = M_X(t) M_Y(t)$$

1) $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$, independent. Distribution of $X + Y$?

2) $X \sim \text{N}(\mu_1, \sigma_1^2)$, $Y \sim \text{N}(\mu_2, \sigma_2^2)$, independent. Distribution of $X + Y$?
Covariance

Let \(X \) be a r.v.

- \(E(X) \) - mean value, average of large number of independent realizations

- \(\text{Var}(X) \) - variance, fluctuations of r.v., how far the realizations are spread around the mean

Covariance describes strength and type of dependence between two random variables.

Def. Let \(X \) and \(Y \) be r.v.'s defined on the same probability space. The covariance of \(X \) and \(Y \) is defined by
Covariance

Proposition. \(\text{Cov}(X,Y) = E(XY) - E(X)E(Y) \)

Proof.

Examples. \(X, Y \) discrete r.v. \(P(X=k, Y=l) \) is given in the table. Compute \(\text{Cov}(X,Y) \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

0.4 0.4 0.2
Some heuristics

By definition, \(\text{Cov}(X, Y) = E((X - E(X))(Y - E(Y))) \)

- \((X - E(X))(Y - E(Y))\) is positive, if \(X - E(X) \) and \(Y - E(Y) \)
- \((X - E(X))(Y - E(Y))\) is negative, if \(X - E(X) \) and \(Y - E(Y) \)

Thus,

\(\text{Cov}(X, Y) > 0 \) means that on average \(X - E(X) \) and \(Y - E(Y) \)

have

\(\text{Cov}(X, Y) < 0 \) means that on average \(X - E(X) \) and \(Y - E(Y) \)

have

\(\text{Cov}(X, Y) = 0 \)
Example (exercise 8.15)
Let \((x, y)\) be uniformly distributed random point on the trapezoid with vertices \((0,0), (2,0), (1,1), (0,1)\).

Is \(\text{Cov}(x, y)\)
(a) positive
(b) negative

\(\text{D}\)
Variance of a sum

Thm. Let X_1, \ldots, X_n be r.v.'s with finite variances.

Then \[\text{Var} \left(\sum_{i=1}^{n} X_i \right) = \]

If $\forall \ i \neq j \ \text{Cov}(X_i, X_j) = 0$, then \[\text{Var} \left(\sum X_i \right) = \]

Proof.
Example (8.29)

Urn has 5 balls, 3 red and 2 green. Draw 2 balls and let $X =$ number of red balls. Compute $\text{Var}(X)$ if the sampling is done (a) with replacement (b) without replacement.
Uncorrelated vs independent

1) X and Y are independent $\Rightarrow \text{Cov}(X,Y) = 0$

2) $\text{Cov}(X,Y) = 0 \not\Rightarrow X$ and Y are independent

Proof. 1) If X and Y independent,

2) Enough to find r.v.'s X and Y, which are not independent, but $\text{Cov}(X,Y) = 0$
Properties of covariance

Thm. Let $X, X_i, X_2, \ldots, Y, Y_i, Y_2, \ldots$ are r.v.'s defined on the same probability space. Assuming that the covariances below are well-defined, the following hold:

(i) $\text{Cov}(X, Y) =$

(ii) $\text{Cov}(aX + b, Y) =$

(iii) $\text{Cov} \left(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{n} b_j Y_j \right) =$

Proof.
Correlation

Covariance is not good to evaluate the strength of dependence: suppose \(\text{Cov}(X, Y) = 1 \), then \(\text{Cov}(10X, 10Y) = 100 \), but the dependence between \(X \) and \(Y \) is the same as dependence between \(10X \) and \(10Y \).

Solution: normalize covariance \(\rightarrow \) correlation

Def. Let \(X, Y \) be r.v., \(\text{Var}(X) < \infty \), \(\text{Var}(Y) < \infty \).

The correlation (coefficient) of \(X \) and \(Y \) is given by
Properties of correlation

Thm. Let \(X, Y \) be r.v. , \(\text{Var}(X) < \infty, \text{Var}(Y) < \infty \). Then

(a) \(\text{Corr}(aX+b, Y) = \)

(b) \(-1 \leq \text{Corr}(X, Y) \leq 1 \)

(c) \(\text{Corr}(X, Y) = 1 \) iff

(d) \(\text{Corr}(X, Y) = -1 \) iff
Example (Exercise 8.54)

Let X, Y be r.v.'s satisfying

$$E(X) = 2, \ E(Y) = 1, \ E(X^2) = 5, \ E(Y^2) = 10, \ E(XY) = 1$$

(a) Compute $\text{Corr}(X, Y)$

(b) Find $c \in \mathbb{R}$ such that X and $X + cY$ are uncorrelated