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1. Let (s,) be a monotonic sequence and let (s,,) be its subsequence. Prove that if the
subsequence (s,, ) is a Cauchy sequence, then (s,) converges.

Solution.

Step 1: (Sp,) is bounded. The sequence (s, ) is a Cauchy sequence. By Lemma 10.10 (s, )
is bounded This means that there exists a number M > 0 such that |s,, | < M for all £ € N.

Step 2: (s,) is bounded. By the definition of a subsequence, k < ny, for any k € N. If (s,,)
is increasing, then for all k € N

(1) E<ng= s, <s, <M,
and thus (s,) is bounded above. If (s,) is decreasing, then for all £ € N
(2) k<ng= sp > sp > —M,

and thus (s,) is bounded below.
Step 3: (s,) converges. Sequence (s,) is monotonic and bounded, therefore by Theo-
rem 10.2 (s,) converges.

2. Determine the set of the partial limits, lim inf and lim sup of the sequence (z,) given by

= L1t (=1)"
n 2 )

Remark. Partial limit is another term used to describe the subsequential limit.

(3) Ty =

Solution. Denote

1+ (=1)"
(4) Sp = n ) tn - 2 )
so that x,, = s, +t,. Denote by X and T the sets of the subsequential limits of the sequences
(x,) and (t,) correspondingly.
Step 1: X =T. Sequence (s,) converges to 0, therefore by Theorem 11.3, any subsequence
of (s,) converges to 0. If either the subsequence (z,,) or the subsequence (t,,) converges,
then by Theorem 9.2

(5) limx,, = lim(t,, + s,,) = lim(z,, — s, ) = limt,,,

and thus X =1T.
Step 2: T ={0,1}. We have that

(6) ton-1 =0, 19, =1,

therefore {0,1} C T. If ¢t ¢ {0, 1}, then

(7) VneN |t, —t| > min{|¢|,|1 — ¢} >0,
soté¢T.

We conclude that X =T = {0, 1}.
Step 3: liminf z,, = 0, limsup x,, = 1. Follows from Theorem 11.8 (ii).

3. Determine if the following series converge
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Solution.

(a) By the Important Example 6
n

(8) lim — =0,
en
therefore there exists N € N such that for any n > N
(9) n <e".
Function x + log z is increasing, so for any n > N
1 1
(10) logn <n (@ >—).
logn n
Since
1
11 — =
(11) Z " 400

by the comparison test (Theorem 14.6 (ii)) we have that

(12) > 5 _ oo

logn

(b) In order to establish the convergence of the series, use the root test (Theorem 14.9)

(13) lim {/ Bn = lim 5 = 0.
log" n logn

This implies that the series ) log—zn converges.

4. Prove that the function )

flw) =257

is continuous on R.

Solution. Step 1: Function x — ﬁ is continuous on R. By Theorems 17.4, g(z) =
1+ z? is continuous on R. Since g(x) > 1 for all x € R, by Theorem 17.4, 1/g is continuous
of R.

Step 2: Function x — 2% is continuous on R. As stated in Lecture 16 (and proven in the
Important Example 11).

Step 3: f is continuous on R. Follows from Steps 1, 2 and Theorem 17.5 about the
continuity of a composition of continuous functions.

5. Let SCRandlet f: S — R and g: .S — R be uniformly continuous on S. Prove that
f + g is uniformly continuous on S.
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Solution. Fix ¢ > 0. From the definition of the uniform continuity, for any ¢ > 0 there
exist 4; > 0 and d9 > 0 such that

(14) [z —yl <o = |f(x) =)l <

Y

NI M oM

(15) -yl <o = |g(z)—gly)| <

Take § = min{d;,d2}. Then for all z,y € R such that |z — y| < § by using the triangle
inequality we have

(16) |f(z) +g(x) = (f(y) —9W)| = |f(z) = f(y) + 9(z) — 9(v)|
(17) < [f(z) = fy)l +19(x) —g(y)|
(18) <e.

This means that

(19) z—yl<d = [(f+9)(z)-(f+9) W) <s,

function f + ¢ is uniformly continuous on R.



