MATH 180C HOMEWORK 9. SOLUTIONS

SPRING 2022

1. Pinsky and Karlin, Ezercise 8.2.3. Suppose that net inflows to a reservoir are described
by a standard Brownian motion. If at time 0, the reservoir has x = 3.29 units of water, what
is the probability that the reservoir never becomes empty in the first ¢ = 4 units of time?

Solution. Let X; denote the amount of water in the reservoir at time ¢t. We have to
compute

(1) P(min X, > 0).

0<t<4

Let (B:)i>o be a standard Brownian motion starting from 0 such that X; = 3.29 + B;. Then

(2) P(min X; > 0) = P(min (3.29+ B;) > 0) = P(min B, > —3.29).
0<t<4 0<t<4 0<t<4
Using the reflection symmetry of the Brownian motion at zero (lecture 20, page 4),
(3) P(min B, > —3.29) = P(max B, < 3.29).
0<t<d 0<t<4

Finally, we can compute the last quantity using the reflection principle (lecture 21, page 6)

( 3.29

(4) P(max B, < 3.29) = P(|By| < 3.29) = P(|B,| < T> ~0.9.

0<t<4

2. Pinsky and Karlin, Exercise 8.2.5. Let 1y be the largest zero of a standard Brownian
motion not exceeding a > 0. That is 79 = max{u > 0; B(u) = 0 and u < a}. Show that

2
(5) P(my < t) = —arcsin/t/a.
7r

Solution. Firstly, note that for any ¢ < a
(6) P(rg <t)=P(Vu € (t,a],B(u) #0) =1—6(t,a),

where 6(t,a) is the probability that there exists a standard Brownian motion has zero on
the interval (¢,a] (see lecture 21, page 9). From the same lecture we know that

2
(7) 0(t,a) = — arccos \/t/a.
T
We conclude that
2 2
(8) P(ro<t)=1—-0(t,a) = —<g — arccos t/a) = —arcsin/t/a.
s T

3. Pinsky and Karlin, Ezericse 8.3.3. The net inflow to a reservoir is well described by

a Brownian motion. Because a reservoir cannot contain a negative amount of water, we
1
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suppose that the water level R(t) at time ¢ is a reflected Brownian motion. What is the
probability that the reservoir contains more than 10 units of water at time ¢ = 257 Assume
that the reservoir has unlimited capacity and that R(0) = 5.

Solution. Let (B;);>0 be a standard Brownian motion such that R(t) is given by
(9) R(t) = |5+ Bil,

i.e., the amount of water is modeled by a Brownian motion starting from R(0) = 5 and
reflected at zero (taking absolute value). Then

(10) P(R(25) > 10) = P(5 + Bas < —10) + P(5 + Bas > 10)
(11) = P(Bgs < —15) + P(By; > 5)

(12) =P(B; <-3)+P(B; >1)

(13) ~ 0.16.

4. Pinsky and Karlin, Ezercise 8.4.2. A Brownian motion (X};);>o has parameters p = 0.1
and o = 2. Evaluate the probability of exiting the interval (a, b] at the point b starting from
Xo=0for b=1, 10 and 100 and a = —b. Why do the probabilities change when a/b is the
same in all cases?

Solution. Denote by u}”

point z. Compute

the probability that the process X exits the interval (—z, x] at

2 2-0.1

— = ——=0.05.

o? 4

Using the formula for the gambler’s ruin probability for the Brownian motion with drift
(lecture 22-23, page 9), we have that

(14)

1 — 005

1) _ ~
Similarly,
(16) W' ~ 062, ul™ ~0.99.

Intuitive explanation: the larger is b, the longer it takes to reach either b or —b, the stronger
is the influence of the drift.

5. Pinsky and Karlin, Exercise 8.4.3. A Brownian motion (X;) has parameters p = 0.1
and o = 2. Evaluate the mean time to exit the interval (a,b] from Xy =0 for b =1, 10 and
100 and @ = —b. Can you guess how this mean time varies with b for b large?

Solution. Denote by T the mean time to exit the interval (—x,x). Similarly as in
the previous problem, using the formula for the mean time in the gambler’s ruin problem
(lecture 22-23, page 9), we have that

1
(17) T = ﬂ(ug”2 — 1) ~ 0.25,

(18) T ~ 24,5 T ~ 986.
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Intuitive explanation: the larger is the value b, the longer it takes to reach either b or —b, and
thus the stronger is the role of the deterministic drift (linear in ¢) compared to the random
fluctuations (of order v/#). So for b > 1, the mean time behaves as % = 100.



