MATH 10C: Calculus III (Lecture B00)

mathwew.uncsd.edu/~ynemish/teaching/10c

Today: Vector-valued functions

Next: Strang 3.2

Week 3:

- homework 3 (due Tuesday, October 18)
- Midterm 1: Wednesday, October 19 (vectors, dot product, cross product, equations of lines and planes)

Equation of a plane

Consider a plane containing point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=\langle a, b, c\rangle$. Then point $X=(x, y, z)$ belong to this plane if and only if
$\vec{n} \perp \overrightarrow{P X}$, i.e. $\vec{n} \cdot \overrightarrow{P X}=0 \quad$ vector equation of a plane
(*) $\quad a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$ scalar equation of a plane
If we denote $d:=-a x_{0}-b y_{0}-c z_{0}$, then (*) becomes $a x+b y+c z+d=0$ general form of the equation of a plane

Parallel and intersecting planes
Let P_{1} and P_{2} be two planes in \mathbb{R}^{3}. Then the following possibilities exist:

| | | P_{1} and P_{2} share a common point |
| :--- | :--- | :--- | :--- |
| YES | | NO |

Finding the line of intersection for two planes
Find the parametric and symmetric equations for the line formed by the intersection of the planes

$$
x+2 y+3 z=0, \quad x+y+z+1=0
$$

(1) $0 \begin{cases}x+2 y+3 z=0 & y+2 z=1 \\ \text { (2) } & =1 \\ x+y+z=-1 & y=-2 z+1\end{cases}$
planes

$\vec{n}_{1}=\langle 1,2,3\rangle$| $k \cdot 1=1$ |
| :--- |
| $k \cdot 1=2$ |
| $k \cdot 1=3$ |
| $\vec{n}_{2}=\langle 1, y, 1\rangle$ |
| such k does |
| not exist | $k \cdot \vec{n}_{2}=n_{1}$ not possible so \vec{n}_{1} is not parallel I to \vec{n}_{2}

Take $z=t$. Then $y=-2 t+1$. Substitute $z=t$ and $y=-2 t+1$

$$
\begin{aligned}
& \text { into (1) or (2) } \\
& (t-2)+2 \cdot(-2 t+1)+3 t \\
& =t \cdot 2-4 t+2+3 t=0
\end{aligned} \left\lvert\, \begin{aligned}
& x+(-2 t+1)+t=-1 \\
& x-2 t+1+t=-1 \\
& x=t-2
\end{aligned} \begin{cases}x=t \cdot 2 & \text { parametric } \\
y=-2 t+1 & \text { eq. ot a } \\
z=t & \text { line }\end{cases}\right.
$$

$$
\underset{t_{1}^{\prime \prime}}{x+2}=\frac{y-1}{-{ }^{2}}=\frac{z}{t^{\prime \prime}}
$$

symanetric eq. of the same line

Vector-valued functions
Definition A vector-valued function is a function that takes real numbers as inputs and gives vectors as outputs, ie.,
$\vec{r}(t)=\langle f(t), g(t)\rangle$ - function from \mathbb{R} to \mathbb{R}^{2}
$\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$ - function from \mathbb{R} to \mathbb{R}^{3}
Example $\vec{r}(t)=\langle\cos t, \sin t\rangle$

$$
\vec{r}(t)=2 t \cdot \vec{i}-e^{t} \cdot \vec{j}+0 \cdot \vec{k}=\left\langle 2 t,-e^{t}, 0\right\rangle
$$

Remark From now on we will not distinguish between the point (x, y, z) and the vector $\langle x, y, z\rangle$, both are just lists of three real numbers

Vector-valued functions
Vector valued function $\vec{r}(t)$ often represents a vector or a position in the space at time t.
Think about the motion of a planet, flight of an airplane or a bird etc.

A vector-valued function may not be defined for all real numbers. For example, $\vec{r}(t)=\left\langle\frac{1}{t}, \frac{1}{\cos t}, t\right\rangle$ is not defined for $t=0$, and $t=\frac{\pi}{2}+\pi n, n$ is an integer

You can explicitly specify the set of real number for which you want to define the function by writing, e.g., $\vec{r}:[0,1] \rightarrow \mathbb{R}^{3}$. We call this set the domain of \vec{r}

Vector-valued functions
If the domain is not explicitly specified, we assume that it is the set of all real numbers for which all (three) components of \vec{r} are defined

Example

$$
\begin{aligned}
\vec{r}(t) & =\left\langle\frac{1}{t}, \frac{1}{\cos t}, t\right\rangle \\
\operatorname{dom}(\vec{r}(t)) & =\left\{t \mid t \neq 0 \text { and } t \neq \frac{\pi}{2}+\pi n, n \text { integer }\right\}
\end{aligned}
$$

Sometimes the domain is found from the problem setup. If the function describes the motion of a bird between time O and tim T, then the domain is the interval $[0, T]$

