MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Independent trials

Next: ASV 2.4-2.5

Week 3:

- Homework 3 due Friday, February 9
- Midterm 1 (Wednesday, February 1, lectures 1-8)

Properties of the CDF $\quad F_{X}(r)=P(X \leq r)$
(1) Monotone increasing: $s<t$, then $F_{x}(s) \leq F_{x}(t)$
(2) $\lim _{r \rightarrow-\infty} F_{x}(r)=0, \lim _{r \rightarrow+\infty} F_{x}(r)=1$
(3) The function F_{x} is right-continuous:

$$
\lim _{t \rightarrow r_{+}} F_{x}(t)=F_{x}(r)
$$

Corollary: If X is a continuous random variable, F_{x} is a continuous function
Example Shoot an arrow at a circular target of radius 1 (choose point from unit disk uniformly at random)

$$
F_{x}(r)=\left\{\begin{array}{lc}
0, & r \leq 0 \\
r^{2}, & 0 \leq r \leq 1 \\
1, & r \geq 1
\end{array}\right.
$$

Cumulative distribution function (CDF)
Summary: For any random variable $X, F_{X}(r)=P(X \leq r)$
(1) Monotone increasing: $s \leq t \Rightarrow F_{x}(s) \leq F_{x}(t)$
(2) $\lim _{r \rightarrow-\infty} F_{x}(r)=0, \lim _{r \rightarrow+\infty} F_{x}(r)=1$
(3) Right-continuous: $\lim _{t \rightarrow r_{+}} F_{x}(t)=F_{x}(r)$

Densities (PDF)
Some continuous random variables have probability densities. This is the infinitesimal version of the probability mass function.
X discrete,$X \in\left\{t_{1}, t_{2}, \ldots\right\}$

$$
P_{x}(t)=P(x=t)
$$

probability mass function
X continuous
$P(X=t)=0$ for all $t \in \mathbb{R}$

Densities (PDF)
Example Shoot an arrow at a circular target of radius 1. $X=$ distance from center

$$
F_{X}(r)= \begin{cases}0, & r \leq 0 \\ r^{2}, & 0 \leq r \leq 1 \\ 1, & r \geq 1\end{cases}
$$

PDF: existence
Thm: If F_{x} is continuous and (piecewise) differentiable, then X has density
Proof: Follows from FTC
Example Let $X=$ random number chosen uniformly on $[0,1]$ We have seen that in this case $P(X \in[s, t])=t-s, 0 \leq s<t \leq 1$ $F_{X}(r)=P(X \leq r)=\{$

$$
f_{x}(r)=
$$

PDF
Example Let $f(t)=\left\{\begin{array}{l}c \sqrt{1-t^{2}}, \quad|t| \leq 1, \\ 0, \text { otherwise },\end{array}>0\right.$

Q: (When) Is $f(t)$ a PDF of some random variable?

- $f \geq 0$
- $1=\int_{-\infty}^{+\infty} f(t) d t=$
f is a PDF

Question
Your car is in a minor accident. The damage repair cost is a random number between 100 and 1500 dollars. Your insurance deductible is 500 dollars.
$Z=$ your out of pocket expenses
Question: The random variable z is
(a) continuous
(b) discrete
(c) neither
(d) both

Independent random variables
A collection $X_{1}, X_{2}, \ldots, X_{n}$ of random variables defined on the same sample space are independent if for any $B_{1}, B_{2}, \ldots, B_{n} \subset \mathbb{R}$, the events
ie.,
Special case: if x_{j} are discrete random variables, it suffices to check the simpler condition for any real numbers $t_{1}, t_{2}, \ldots, t_{n}$

Example Let $X_{1}, X_{2}, \ldots, X_{n}$ be fair coin tosses, $H \sim 1, T \sim O$

$$
P\left(X_{1}=t_{1}, X_{2}=t_{2}, \ldots, X_{n}=t_{n}\right)=\quad=P\left(X_{1}=t_{1}\right) \ldots P\left(x_{n}=t_{1}\right)
$$

Bernoulli distribution
Experiments can have numerical observables, but sometimes you only observe whether there is success or failure
We model this with a random variable X taking value I with probability P, and value 0 with probability $1-p$

In practice, we usually repeat the experiment many times, making sure to use the same setup each trial. The previous trials do not influence the future ones.

Independent trials. Binomial distribution
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $\operatorname{Ber}(p)$ random variables
E.g. $P\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0, X_{5}=0, X_{6}=0\right)$

$$
=
$$

$$
=
$$

Run n independent trials, each with success probability p,

$$
X_{1}, X_{2}, \cdots, X_{n} \sim \operatorname{Ber}(p)
$$

Let $S_{n}=\#$ successful trials
What is the distribution of S_{n} ?
$P\left(S_{n}=k\right)=P(\{$ exactly k of the n trials are successful\} $)$
$0 \leq k \leq n$

$$
=
$$

If , \# of Heads in n tosses

Independent trials. Binomial distribution
Example Roll a fair die 10 times. What is the probability that 6 comes up at least 3 times?
success

$$
X_{1}, X_{2}, \ldots, X_{10} \sim
$$

$$
\begin{aligned}
P\left(S_{10} \geq 3\right) & = \\
& = \\
& =
\end{aligned}
$$

What is the probability that no 6 is rolled in the 10 rolls?

$$
P\left(S_{10}=0\right)=
$$

First success time. Geometric distribution
keep rolling. Let N denote the first roll where a 6 appears. N is a random variable.
What is the distribution of N?
$N=$ first success in repeated independent trials (success rate p). Model trials with (unlimited number of) independent $\operatorname{Ber}(p)$'s

$$
\begin{aligned}
\{N=k\} & =\left\{X_{1}=0, X_{2}=0, \ldots, X_{k-1}=0, X_{k}=1\right\} \\
P(N=k) & = \\
& =
\end{aligned}
$$

Geometric Distribution Geom (p) on $\{1,2,3, \ldots\}$. Is it?

Rare events. Poisson distribution
Let $\lambda>0$ and let X be a r.v. taking values in $\{0,1,2, \ldots\}$. X has Poisson distribution with parameter λ if

$$
P(X=k)=\quad \text { for } k \in\{0,1,2, \ldots\}
$$

We write
Poisson distribution describes the probability that a "rare" event occurs k times after repeating the experiment (independent trials) "many" times.
Is this a probability distribution?

$$
P(x=k) \geq 0
$$

λ gives the "expected number" of occurrances

Poisson distribution. Example
Observation: between 1875 and 1894 (20 years) in 14 units of Prussian army there were 196 deaths from horse kicks, distributed in the following way

\# deaths per unit per year, k	\# unit-years with k deaths	empirical probability	$P(X=k)$
0	144		
1	91		
2	32		
3	11		
4	2		
$5+$	0	280	

