MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Independent trials

Next: ASV 3.3

Week 5:

- Homework 3 due Friday, February 10

Independent random variables
A collection $X_{1}, X_{2}, \ldots, X_{n}$ of random variables defined on the same sample space are independent if for any $B_{1}, B_{2}, \ldots, B_{n} \subset \mathbb{R}$, the events
$\left\{X_{1} \in B_{1}\right\},\left\{X_{2} \in B_{2}\right\}, \ldots,\left\{X_{n} \in B_{n}\right\}$ are independent ie., $P\left(X_{1} \in B_{1}, X_{2} \in B_{2}, \ldots, X_{n} \in B_{n}\right)=P\left(X_{1} \in B_{1}\right) \cdot P\left(X_{2} \in B_{2}\right) \cdots P\left(X_{n} \in B_{n}\right)$ Special case: if X_{j} are discrete random variables, it suffices to check the simpler condition
for any real numbers $t_{1}, t_{2}, \ldots, t_{n}$

$$
P\left(X_{1}=t_{1}, X_{2}=t_{2}, \ldots, X_{n}=t_{n}\right)=P\left(X_{1}=t_{1}\right) \cdot P\left(X_{2}=t_{2}\right) \cdots P\left(X_{n}=t_{n}\right)
$$

Example Let $X_{1}, X_{2}, \ldots, X_{n}$ be fair coin tosses, $H \sim 1, T \sim 0$

$$
P\left(X_{1}=t_{1}, X_{2}=t_{2}, \ldots, X_{n}=t_{n}\right)=\frac{1}{2^{n}}=\underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdot \cdots \frac{1}{2}}_{n \text { times }}=P\left(X_{1}=t_{1}\right) \cdots P\left(X_{n}=t_{1}\right)
$$

Bernoulli distribution
Experiments can have numerical observables, but sometimes you only observe whether there is
success or failure
We model this with a random variable X taking value I with probability P, and value 0 with probability $1-p$

$$
X \sim \operatorname{Ber}(p) \quad(\text { Bernoulli) }
$$

In practice, we usually repeat the experiment many times, making sure to use the same setup each trial. The previous trials do not influence the future ones.

Independent trials. Binomial distribution $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $\operatorname{Ber}(p)$ random variables
Egg.

$$
\begin{aligned}
& P\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0, X_{5}=0, X_{6}=0\right) \\
& \quad=P\left(X_{1}=0\right) P\left(X_{2}=1\right) P\left(X_{3}=1\right) P\left(X_{4}=0\right) P\left(X_{5}=0\right) P\left(X_{6}=0\right) \\
& \quad=(1-p) \cdot P \cdot P(1-p)(1-P)(1-P)=P^{2}(1-p)^{4}
\end{aligned}
$$

Run n independent trials, each with success probability p,

$$
X_{1}, X_{2}, \cdots, X_{n} \sim \operatorname{Ber}(p)
$$

Let $S_{n}=\#$ successful trials $=X_{1}+X_{2}+X_{3}+\cdots+X_{n}$
What is the distribution of S_{n} ?
$P\left(S_{n}=k\right)=P($ \{exactly k of the n trials are successful\} $)$
$0 \leq k \leq n$

$$
=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { Binomial distribution } \operatorname{Bin}(n, p)
$$

If $p=\frac{1}{2}, 1-p=\frac{1}{2}, P\left(S_{n}=k\right)=\binom{n}{k} \frac{1}{2^{n}}$, \# of Heads in n tosses $\sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$

Independent trials. Binomial distribution
Example Roll a fair die 10 times. What is the probability that 6 comes up at least 3 times?
success $\quad X_{1}, X_{2}, \ldots, X_{10} \sim \operatorname{Ber}\left(\frac{1}{6}\right)$

$$
\begin{aligned}
& S_{10}=X_{1}+X_{2}+\cdots+X_{10} \sim \operatorname{Bin}\left(10, \frac{1}{6}\right) \\
& P\left(S_{10} \geq 3\right)=\sum_{k \geq 3} P\left(S_{10}=k\right)=1-P\left(S_{10}<3\right) \\
&=1-P\left(S_{10}=0\right)-P\left(S_{10}=1\right)-P\left(S_{10}=2\right) \\
&=1-\binom{10}{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{10}-\binom{10}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{9}-\binom{10}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{8}
\end{aligned}
$$

What is the probability that no 6 is rolled in the 10 rolls?

$$
P\left(S_{10}=0\right)=\binom{10}{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{10}=\left(\frac{5}{6}\right)^{10}
$$

First success time. Geometric distribution $|\alpha| 2), \sum_{k=0}^{\infty} \alpha^{k}=\frac{1}{1-\alpha}$
keep rolling. Let N denote the first roll where a 6 appears. N is a random variable.
What is the distribution of N?
$N=$ first success in repeated independent trials (success rate p).
Model trials with (unlimited number of) independent $\operatorname{Ber}(p)$'s

$$
\begin{aligned}
& X_{1}, X_{2}, X_{3}, \ldots \quad N \in\{1,2,3,4, \ldots\} \\
& \{N=k\}=\left\{X_{1}=0, X_{2}=0, \ldots, X_{k-1}=0, X_{k}=1\right\} \\
& P(N=k) \stackrel{\text { indef. }}{\{ } P\left(X_{1}=0\right) P\left(X_{2}=0\right) \cdots P\left(X_{k-1}=0\right) P\left(X_{k}=1\right) \\
& \\
& \\
& =(1-P)^{k-1} P
\end{aligned}
$$

Geometric D_{∞} istribution $\operatorname{Geom}(p)_{\infty}$ on $\{1,2,3, \ldots\}$. Is it?

$$
\sum_{k=1}^{\infty} P(N=k)=\sum_{k=1}^{\infty}(1-p)^{k-1} p=p \sum_{k=1}^{\infty}(1-p)^{k-1=l}=p \sum_{l=0}^{\infty}(1-p)^{l}=p \cdot \frac{1}{1-(1-p)}=1 .
$$

Let $\lambda>0$ and let X be a r.v. taking values in $\{0,1,2, \ldots\}$. X has Poisson distribution with parameter λ if

$$
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad \text { for } \quad k \in\{0,1,2, \ldots\}
$$

We write $X \sim \operatorname{Pois}(\lambda)$
Poisson distribution describes the probability that a "rare" event occurs k times after repeating the experiment (independent trials) "many" times.

Is this a probability distribution?

$$
P(X=k) \geq 0, \quad \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} e^{\lambda}=1
$$

λ gives the "expected number" of occurrances

