MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Independent trials

Next: ASV 3.3

Week 5:

- Homework 3 due Friday, February 10

Independent random variables
A collection $X_{1}, X_{2}, \ldots, X_{n}$ of random variables defined on the same sample space are independent if for any $B_{1}, B_{2}, \ldots, B_{n} \subset \mathbb{R}$, the events
ie.,
Special case: if x_{j} are discrete random variables, it suffices to check the simpler condition for any real numbers $t_{1}, t_{2}, \ldots, t_{n}$

Example Let $X_{1}, X_{2}, \ldots, X_{n}$ be fair coin tosses, $H \sim 1, T \sim O$

$$
P\left(X_{1}=t_{1}, X_{2}=t_{2}, \ldots, X_{n}=t_{n}\right)=\quad=P\left(X_{1}=t_{1}\right) \ldots P\left(x_{n}=t_{1}\right)
$$

Bernoulli distribution
Experiments can have numerical observables, but sometimes you only observe whether there is success or failure
We model this with a random variable X taking value I with probability P, and value 0 with probability $1-p$

In practice, we usually repeat the experiment many times, making sure to use the same setup each trial. The previous trials do not influence the future ones.

Independent trials. Binomial distribution
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $\operatorname{Ber}(p)$ random variables
E.g. $P\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0, X_{5}=0, X_{6}=0\right)$

$$
=
$$

$$
=
$$

Run n independent trials, each with success probability p,

$$
X_{1}, X_{2}, \cdots, X_{n} \sim \operatorname{Ber}(p)
$$

Let $S_{n}=\#$ successful trials
What is the distribution of S_{n} ?
$P\left(S_{n}=k\right)=P(\{$ exactly k of the n trials are successful\} $)$
$0 \leq k \leq n$

$$
=
$$

If , \# of Heads in n tosses

Independent trials. Binomial distribution
Example Roll a fair die 10 times. What is the probability that 6 comes up at least 3 times?
success

$$
X_{1}, X_{2}, \ldots, X_{10} \sim
$$

$$
\begin{aligned}
P\left(S_{10} \geq 3\right) & = \\
& = \\
& =
\end{aligned}
$$

What is the probability that no 6 is rolled in the 10 rolls?

$$
P\left(S_{10}=0\right)=
$$

First success time. Geometric distribution
keep rolling. Let N denote the first roll where a 6 appears. N is a random variable.
What is the distribution of N?
$N=$ first success in repeated independent trials (success rate p). Model trials with (unlimited number of) independent $\operatorname{Ber}(p)$'s

$$
\begin{aligned}
\{N=k\} & =\left\{X_{1}=0, X_{2}=0, \ldots, X_{k-1}=0, X_{k}=1\right\} \\
P(N=k) & = \\
& =
\end{aligned}
$$

Geometric Distribution Geom (p) on $\{1,2,3, \ldots\}$. Is it?

Rare events. Poisson distribution
Let $\lambda>0$ and let X be a r.v. taking values in $\{0,1,2, \ldots\}$. X has Poisson distribution with parameter λ if

$$
P(X=k)=\quad \text { for } k \in\{0,1,2, \ldots\}
$$

We write
Poisson distribution describes the probability that a "rare" event occurs k times after repeating the experiment (independent trials) "many" times.
Is this a probability distribution?

$$
P(x=k) \geq 0
$$

λ gives the "expected number" of occurrances

Poisson distribution. Example
Observation: between 1875 and 1894 (20 years) in 14 units of Prussian army there were 196 deaths from horse kicks, distributed in the following way

\# deaths per unit per year, k	\# unit-years with k deaths	empirical probability	$P(X=k)$
0	144		
1	91		
2	32		
3	11		
4	2		
$5+$	0	280	

Poisson distribution. Example
A 100 year storm is a storm magnitude expected to occur in any given year with probability $\frac{1}{100}$. Over the course of a century, how likely is it to see at least 4100 year storms?

Summary
Independent trials: the most important (discrete) probability distributions are:

- $\operatorname{Ber}(p): P(x=1)=p, \quad P(x=0)=1-p, \quad 0 \leq p \leq 1$ (single trial with success probability p)
- $\operatorname{Bin}(n, p): P\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad 0 \leq k \leq n$ (number of successes in n independent trials with rate p)
- $\operatorname{Geom}(p): P(N=k)=(1-p)^{k-1} p, \quad k=1,2,3, \ldots$
(first successful trial in repeated independent trials with rate p)
- Poisson $(\lambda): P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \ldots \quad \lambda>0$ (approximates $\operatorname{Bin}\left(n, \frac{\lambda}{n}\right)$, number of rare events in many trials)

