MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Expectation

Next: ASV 3.4

Week 5:

- Homework 3 due Friday, February 10
- Regrades of Midterm 1, HW 1, HW2 active on Gradescope until February 12, 11 PM

Let $\lambda>0$ and let X be a r.v. taking values in $\{0,1,2, \ldots\}$. X has Poisson distribution with parameter λ if

$$
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad \text { for } \quad k \in\{0,1,2, \ldots\}
$$

We write $X \sim \operatorname{Pois}(\lambda)$
Poisson distribution describes the probability that a "rare" event occurs k times after repeating the experiment (independent trials) "many" times.

Is this a probability distribution?

$$
P(X=k) \geq 0, \quad \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}=e^{-\lambda} e^{\lambda}=1
$$

λ gives the "expected number" of occurrances

Rare events. Poisson distribution

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
$$

Let X be the number of successes in n independent trials with success probability $\frac{\lambda}{n}, \lambda>0$.
Then $P(X=k)=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}$
What happens if $n \rightarrow \infty \quad(k \in\{0,1,2, \ldots\}$ is fixed)?

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}=\lim _{n \rightarrow \infty} \frac{n!}{k!(n-k)!} \frac{\lambda^{k}}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\frac{\lambda^{k}}{k!} \cdot \lim _{n \rightarrow \infty} \frac{n \cdot(n-1)(n-2) \cdots(n-k+1)}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\frac{n \cdot n \cdot n \cdots n}{k!} \lim _{n \rightarrow \infty} 1 \cdot\left(1-\frac{1}{n}\right)\left(1-\frac{k}{n}\right) \cdots\left(1-\frac{(k-1)}{n}\right)\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda^{-}}{n}\right)^{k}=\frac{\lambda^{k}}{k!} e^{-\lambda} \\
& 1
\end{aligned}
$$

Poisson distribution. Example
Observation: between 1875 and 1894 (20 years) in 14 units of Prussian army there were 196 deaths from horse kicks, distributed in the following way

| \# deaths per unit
 per year, k | \# unit-years
 with k deaths | empirical
 probability | $P(X=k)$ |
| :---: | :---: | :---: | :---: | :--- | | 144 |
| :---: |
| 0 |

Poisson distribution. Example
A 100 year storm is a storm magnitude expected to occur in any given year with probability $\frac{1}{100}$. Over the course of a century, how likely is it to see at least 4100 year storms?
We can compute this as $P\left(S_{100, \frac{1}{100}} \geq 4\right)$
for $S_{100,} \frac{1}{100} \sim \operatorname{Bin}\left(100, \frac{1}{100}\right)$

$$
P\left(S_{100 \cdot \frac{1}{100}}=k\right)
$$

$$
\begin{array}{cc}
P\left(S_{100,} \frac{1}{100} \geq 4\right) & =\sum_{k=4}^{100}\binom{100}{k}\left(\frac{1}{100}\right)^{k}\left(1-\frac{1}{100}\right)^{100-k}=1-\sum_{k=0}^{3}\binom{100}{k}\left(\frac{1}{100}\right)^{k}\left(1-\frac{1}{100}\right)^{100 k} \\
23 & 22 \\
1-\sum_{k=0}^{3} \frac{e^{-1}}{k!}=1-\frac{1}{e}\left(1+1+\frac{1}{2}+\frac{1}{6}\right) & \frac{\lambda^{k}}{k!} e^{-\lambda} \\
!11
\end{array} \frac{e^{-1}}{k!}
$$

Summary
Independent trials: the most important (discrete) probability distributions are:

- $\operatorname{Ber}(p): P(x=1)=p, \quad P(x=0)=1-p, \quad 0 \leq p \leq 1$ (single trial with success probability p)
- $\operatorname{Bin}(n, p): P\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad 0 \leq k \leq n$ (number of successes in n independent trials with rate p)
- $\operatorname{Geom}(p): P(N=k)=(1-p)^{k-1} p, \quad k=1,2,3, \ldots$
(first successful trial in repeated independent trials with rate p)
- Poisson $(\lambda): P(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, k=0,1,2, \ldots \quad \lambda>0$ (approximates $\operatorname{Bin}\left(n, \frac{\lambda}{n}\right)$, number of rare events in many trials)

Expectation
Example Toss a fair coin 1000 times, and record the sequence of outcomes 1100100110100
Average then $\frac{1}{1000}(1+1+0+0+1+0+0+1+1-) \approx \frac{1}{2}=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot 0$
What if the coin is biased $P\left(X_{j}=1\right)=P, P\left(X_{j}=0\right)=1-p$? Then the average (random) is approximately $p=p \cdot 1+(1-p) \cdot 0$
Def. Let X be a discrete random variable with possible values $t_{1}, t_{2}, t_{3} \ldots$. The expectation (or expected value, or mean) of X is

$$
E(X):=\sum_{j} t_{j} \cdot P\left(X=t_{j}\right)
$$

Expectation
Q: Is the expectation $E(X)$ the value that X is equal to most often?
(a) Yes, always
(b) No, not generally

Example Let X be the number rolled on a fair die.

$$
E(X)=\sum_{k=1}^{6} k \cdot P(X=k)=\sum_{k=1}^{6} k \cdot \frac{1}{6}=\frac{1}{6}(1+2+3+4+5+6)=\frac{21}{6}=\frac{7}{2}
$$

Example Let y be $\operatorname{Ber}(p)$.

$$
E(y)=0 \cdot(1-p)+1 \cdot p=p
$$

Expectation
Example You toss a biased coin repeatedly until the first heads. How long do you expect it to take?
$N=$ the time the first heads comes up, $N=G \operatorname{lem}(p)$

$$
\begin{aligned}
E(N) & =\sum_{k=1}^{\infty} k \cdot P(N=k)=\sum_{k=1}^{\infty} k \cdot(1-p)^{k-1} \cdot p \\
& =p \sum_{l=0}^{k-1=l}(1+l)(1-p)^{e}=p \cdot \sum_{l=0}^{\infty}(1-p)^{e}+p \sum_{l=0}^{\infty} l(1-p)^{e} \\
& =p \cdot \frac{1}{1-(1-p)}+(1-p) \sum_{l=1}^{\infty} l(1-p)^{l-1} p=1+(1-p) E(N) \\
E(N) & =1+(1-p) E(N), E(N)(1-(1-p))=1, E N(N)=\frac{1}{p}
\end{aligned}
$$

