MATH 180A (Lecture A00)

mathweb.ucsd.edu/~ynemish/teaching/180a

Today: Expectation

Next: ASV 3.4

Week 5:

Homework 3 due Friday, February 10

 Regrades of Midterm 1, HW 1, HW2 active on Gradescope until February 12, 11 PM Rare events. Poisson distribution $\forall x \in \mathbb{R}$ $\sum_{k=0}^{\infty} \sum_{i=1}^{k} e^{x}$ Let $\lambda > 0$ and let X be a r.v. taking values in $\{0, 1, 2, ..., \}$. X has Poisson distribution with parameter λ if $P(X=k) = \sum_{k=0}^{k} e^{-\lambda}$ for $k \in \{0, 1, 2, ...\}$ We write $X \sim Pois(\lambda)$

Poisson distribution describes the probability that a

"rare" event occurs k times after repeating the

experiment (independent trials) "many" times.

Is this a probability distribution?

 $P(X=k) \ge 0, \qquad \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{\lambda} = 1$

λ gives the "expected number" of occurrances

Rare events. Poisson distribution

Let X be the number of successes in n

independent trials with success probability $\frac{\lambda}{n}$, $\lambda > 0$.

Then
$$P(X=k) =$$

What happens if (k \ {0,1,2,...} is fixed).

Poisson distribution. Example

Observation: between 1875 and 1894 (20 years) in 14 units

of Prussian army there were 196 deaths from horse

kicks distributed in the following way

# deaths per unit per year, k	# unit-years with k deaths	empirical probability	P(X=k)
0	լկկ	0 21	$P(X=0) = e^{-0.7}$
1	91	0.33	$P(X=1) = 0.7 e^{0.7}$
2	32	O. I)	$P(X=2) = \frac{(0.7)^2 - 0.7}{2}e^{-0.7}$
3	11	0.04	
4	2	0.01	
5+	0 280	O	
et	i	s "expected nun	iber" of death per unit

Poisson distribution. Example

A 100 year storm is a storm magnitude expected

to occur in any given year with probability too.

Over the course of a century, how likely is it to

see at least 4 100 year storms?

Independent trials: the most important (discrete) probability distributions are:

- Ber(p): P(X=1)=p, P(X=0)=1-p, O≤P≤1
 (single trial with success probability p)
- $Bin(n,p): P(S_n = k) = {\binom{n}{k}} p^{n} (1-p)^{n-k}$, $O \le k \le n$ (number of successes in n independent trials with rate p)
- Geom(p): $P(N=k) = (I-p)^{k-1}p$, K=1,2,3,...
 - (first successful trial in repeated independent trials with rate p)
- Poisson(λ): $P(X = k) = e^{-\lambda} \frac{\lambda^{k}}{k!}$, $k = 0, 1, 2, ..., \lambda > 0$

(approximates $Bin(n, \frac{\lambda}{n})$, number of rare events in

many trials)

Expectation

Example Toss a fair coin 1000 times, and record the

sequence of outcomes

What if the coin is biased $P(X_{j}=1)=P, P(X_{j}=0)=1-P$?

Def. Let X be a discrete random variable with possible

values t, tz, tz

Expectation

Q: Is the expectation E(X) the value that X is

equal to most often?

(a) Yes, always

(b) No, not generally

Example Let X be the number rolled on a fair die.

Example Let Y be Ber(p).

Expectation

Example You toss a biased coin repeatedly until the first heads. How long do you expect it to take?

Examples. Binomial

Examples. Poisson $X \sim Poisson(\lambda)$ E(X) =Example A factory has, on average, 3 accidents per month. Estimate the probability that there will be exactly 2 accidents this month.

Examples

Toss a fair coin until tails comes up. If this is on

the first toss, you win 2 dollars and stop. If heads

comes up, the pot doubles and you continues. That is,

if the first tails is on the k-th toss, you win 2" dollars.

What is your expected winnings?