MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Expectation

Next: ASV 3.4

Week 5:

- Homework 3 due Friday, February 10
- Regrades of Midterm 1, HW 1, HW2 active on Gradescope until February 12, 11 PM

Expectation
Def. Let X be a discrete random variable with possible values $t_{1}, t_{2}, t_{3} \ldots$. The expectation or expected value of X is or mean

$$
E(x):=\sum_{j} t_{j} \cdot P\left(x=t_{j}\right) \quad \text { weighted average }
$$

Example Let y be $\operatorname{Ber}(p)$.

$$
E(y)=1 \cdot p+0 \cdot(1-p)=p
$$

Example You toss a biased coin repeatedly until the first heads. How long do you expect it to take?
$N=$ the time the first heads comes up, $\quad N \sim \operatorname{Geom}(p)$

$$
E(N)=\frac{1}{P}
$$

Examples. Binomial
$S_{n} \sim \operatorname{Bin}(n, p) \quad\left(S_{n}=x_{1}+x_{2}+\cdots+X_{n}\right.$ for x_{j} independent $\left.\operatorname{Ber}(p)\right)$

$$
E\left(S_{n}\right)=
$$

$$
\begin{aligned}
& \text { Examples. Poisson } \\
& X \sim \text { Poisson }(\lambda) \\
& E(X)=
\end{aligned}
$$

Example A factory has, on average, 3 accidents per month. Estimate the probability that there will be exactly 2 accidents this month.

Examples
Toss a fair coin until tails comes up. If this is on the first toss, you win 2 dollars and stop. If heads comes up, the pot doubles and you continues. That is, if the first tails is on the k-th toss, you win 2^{k} dollars. What is your expected winnings?

Expectation of continuous random variables
X discrete, $X \in\left\{t_{1}, t_{2}, \ldots\right\}$
X continuous $P(X=t)=0$ for each

$$
E(x)=\sum_{k} t_{k} P\left(x=t_{k}\right)
$$

with density $f_{X}(t)$

Example Let $U \sim \operatorname{Unif}([a, b]), f_{u}(t)= \begin{cases}\frac{1}{b-a}, & a \leq t \leq b \\ 0, & \text { otherwise }\end{cases}$

Example
Q: Shoot an arrow at a circular target of radius 1.
What is the expected distance of the arrow from the center?
a) 1
b) $\frac{2}{3}$
C) $\frac{1}{2}$
d) $1 / 4$
e) 0

Expectation of continuous random variables
Example Consider function $f(t)=\left\{\begin{array}{cc}0, & t \leq 1 \\ \frac{1}{t^{2}} & , t>1\end{array}\right.$
Is $f(t)$ a probability density?

$$
f(t) \geq 0 \quad \int_{\mathbb{R}} f(t) d t=
$$

Suppose that X is a random variable with PDF $f_{X}=f$.
What is $E(X)$?

$$
E(X)=\int_{-\infty}^{+\infty} t f_{x}(t) d t=
$$

Expectations of functions of random variables
$\Omega \underset{\substack{\text { random } \\ \text { variable }}}{X} \mathbb{R} \xrightarrow[\text { function }]{\longrightarrow} \mathbb{R} \quad$ composition $g(x)=g \circ x$
Example $\quad X \sim \operatorname{Bin}(n, p)$ is the number of successes in n trials $g(X)=\frac{X}{h}$ is the proportion of successful trials

$$
\begin{aligned}
& g(X) \in\left\{0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots, \frac{n}{n}=1\right\} \\
& E(g(x))=
\end{aligned}
$$

Proposition For a discrete random variable X

$$
E(g(x))=
$$

Note, by definition $E(g(x))=\sum_{t} t P(g(x)=t)$

Expectations of functions of random variables
Proposition For a continuous random variable X with density f_{x}

$$
E(g(x))=
$$

Example Let U be a uniform random variable on $[a, b]$
Then

$$
E\left[u^{2}\right]=\quad \quad f_{u}(t)=\left\{\begin{array}{l}
\frac{1}{b-a}, t \in[a, b] \\
0, \text { otherwise }
\end{array}\right.
$$

Important class of functions: $g(x)=x^{n}$ discrete: $E\left(X^{n}\right)=\sum_{t} t^{n} P(X=t)$, continuous: $E\left(X^{n}\right)=\int_{-\infty}^{\infty} t^{n} f_{x}(t) d t$

Expectations of functions of random variables
Example (Car accident/insurance example)
An accident causes Y dollars of damage to your car, where insurance deductible is 500 dollars.
$y \sim$ Unif $([100,1500])$. What is the expected amount you pay?
$X=$ amount you pay $=$ (neither discrete neither discrete
nor continuous)

$$
E(x)=E(g(y))=
$$

$$
\min \{t, 500\}= \begin{cases}t, & t \in[100,500] \\ 500, & t \in[500,1500]\end{cases}
$$

Variance
Definition The variance of a random variable X is

- first compute $\mu=E(X)$, then compute $E(g(x))$ with $g(t)=(t-\mu)^{2}$
- if X is discrete, $\operatorname{Var}(X)=$
- if X is continuous, $\operatorname{Var}(X)=$
- The square root of the variance is called

Variance. Example
Example $\quad X \sim \operatorname{Ber}(p), E(X)=p$

$$
\operatorname{Var}(X)=
$$

$=$

$$
=
$$

Example $u \sim$ unif $[a, b], E(u)=\frac{a+b}{2}$

$$
\operatorname{Var}(u)=
$$

Alternative formula for variance
Proposition. Let X be a random variable. Then

$$
\operatorname{Var}(x)=
$$

Proof (For continuous random variables). Let $\mu:=E(x)$.
Then

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left((x-\mu)^{2}\right)=\int_{\mathbb{R}}(t-\mu)^{2} f_{x}(t) d t \\
& = \\
& = \\
& =
\end{aligned}
$$

Example $\quad X \sim \operatorname{Ber}(p), E(X)=p$.

Variance
Variance is a measure of how "spread out from the mean" the distribution is.
Proposition Let X be a random variable with finite expectation $E(X)=\mu$. Then

Proof (\Leftrightarrow) Exercise
(\Rightarrow) (Assume X is discrete).

$$
0=\operatorname{Var}(x)=\quad \Rightarrow \text { For all } t_{1}
$$

For all t, either or , so if therefore,

Expectation and variance of $a X+b$
Let X be a random variable, and let $a, b \in \mathbb{R}$. Then
(i) $E(a x+b)=$
(ii) $\operatorname{Var}(a X+b)=$ if $E(x)$ and $\operatorname{Var}(x)$ exist

Proof (i) \leftarrow homework
(ii) $\operatorname{Var}(a X+b)=$

$$
=
$$

$$
=
$$

$$
=
$$

$$
=
$$

Variance of geometric distribution
Let $X \sim \operatorname{Geom}(p)$. We know that $E(X)=\frac{1}{p}$

$$
E\left(X^{2}\right)=\sum_{k=1}^{\infty} k^{2} P(X=k)=\sum_{k=1}^{\infty} k^{2} \cdot p(1-p)^{k-1}=
$$

$$
=
$$

$$
l=k-1=
$$

$$
=
$$

$$
=
$$

Random variables. Summary

Discrete	Continuous
Finite/countable set of possible	Uncountable set of possible
values , $\sum_{t} P(X=t)=1$	values, $\forall t \in \mathbb{R} \quad P(X=t)=0$
$P M F: P_{x}(t)=P(X=t)$	$P D F: f_{X}: \mathbb{R} \rightarrow \mathbb{R}$
$P(X \in B)=\sum_{t \in B} P_{x}(t)$	$P(X \in B)=\int_{B} f_{x}(t) d t$
$C D F \quad F_{x}$ is a step function	$C D F \quad F_{x}$ is a continuous function
Expectation: $E(X)=\sum_{t} t P(X=t)$	Expectation: $E(X)=\int_{\mathbb{R}} t f_{x}(t) d t$
$E(g(X))=\sum_{t} g(t) P(X=t)$	$E(g(X))=\int_{\mathbb{R}} g(t) f_{x}(t) d t$
Relation between $C D F$ and $P M F:$	Relation between $C D F$ and $P D F:$
magnitude of jump of F_{X} at t is	$f_{x}(t)=F_{x}^{\prime}(t)$ on the intervals where
$P(X=t)$	

Random variables. Summary
F_{x} is (i) nondecreasing, (ii) right-continuous
(iii) $\lim _{t \rightarrow-\infty} F_{x}(t)=0, \lim _{t \rightarrow+\infty} F_{x}(t)=1$

Variance: $\operatorname{Var}(X)=E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-(E(x))^{2}$

$$
E(a X+b)=a E(X)+b, \quad \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

