MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Gaussian (Normal) distribution Normal approximation Next: ASV 4.1

Week 6:

- Homework 4 due Friday, February 17

CDF of $\quad N(0,1)$
Suppose $X \sim N(0,1)$. What is $P(|x| \leq 1)$?

$$
\begin{aligned}
P(-1 & \leq X \leq 1) \\
& =\int_{-1}^{1} \varphi(t) d t=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-t^{2} / 2} d t
\end{aligned}
$$

Cannot use the polar coordinate trick.

$$
\Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t-C D F \text { of } X \sim N(0,1)
$$

- no simple explicit formula
- table of values of $P(x)$ (for $x \geq 0$)

Normal table of values (Appendix E in textbook)

\mathbf{Z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{0 . 0}$	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
$\mathbf{0 . 1}$	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
$\mathbf{0 . 2}$	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
$\mathbf{0 . 3}$	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
$\mathbf{0 . 4}$	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
$\mathbf{0 . 5}$	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
$\mathbf{0 . 6}$	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
$\mathbf{0 . 7}$	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
$\mathbf{0 . 8}$	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
$\mathbf{0 . 9}$	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389

This table gives $P(Z \leq z)$ where $Z \sim N(0,1), z=x_{i}+y_{j}$
Example $\Phi(0.91)=P(z \leq 0.91)=P(z \leq 0.9+0.01) \approx 0.8186$
Fact:

$$
\begin{aligned}
& P(Z>0.24)= \\
& P(-0.28<Z<0.59)=
\end{aligned}
$$

Normal table of values

Z	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{0 . 0}$	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
$\mathbf{0 . 1}$	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
$\mathbf{0 . 2}$	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
$\mathbf{0 . 3}$	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
$\mathbf{0 . 4}$	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
$\mathbf{0 . 5}$	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
$\mathbf{0 . 6}$	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
$\mathbf{0 . 7}$	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
$\mathbf{0 . 8}$	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
$\mathbf{0 . 9}$	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389

Exercise Let $Z \sim N(0,1)$
Find $x_{0} \in \mathbb{R}$ such that $P\left(|Z|>x_{0}\right) \approx 0.704$

$$
P\left(|z|>x_{0}\right)=
$$

Mean and variance of $x \sim N(0,1)$

$$
E(x)=\int_{-\infty}^{+\infty} t f_{x}(t) d t=
$$

$$
\operatorname{Var}(X)=E\left(X^{2}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^{2} e^{-\frac{t^{2}}{2}} d t
$$

General normal distribution $\quad N\left(\mu, \sigma^{2}\right)$
Def Let $\mu \in \mathbb{R}$ and $\sigma>0$. Random variable X has normal (Gaussian) distribution with mean μ and variance σ^{2} if the PDF of X is given by

$$
f_{X}(x)=
$$

We write

Using the density we can compute

$$
E(X)=, \operatorname{Var}(X)=
$$

"Gaussian distribution" = family of distributions

Relation between $X \sim N(\mu, 6)$ and $Z \sim N(0,1)$
Proposition Let $X \sim N\left(\mu, \sigma^{2}\right), a \neq 0, b \in \mathbb{R}$.
Then

Using this proposition any Gaussian random variable can be written as a shifted and rescaled standart normal. E.g., if $6>0, \mu \in \mathbb{R}$ and $Z \sim N(0,1)$, then

If $X \sim N\left(\mu, \sigma^{2}\right)$, then $E(X)=\quad$ $\operatorname{Var}(X)=$ If $X \sim N\left(\mu, \sigma^{2}\right)$, then

Example
Let $\quad X \sim N(-3,4)$
Find $P(x<0.91) ; P(x>0.82) ; P(-0.24<x<0.88)$
If $X \sim N(-3,4)$, then
, So

$$
P(X<0.91)=
$$

$$
P(-0.24<x<0.88)=
$$

The message:
If we have independent and identically distributed random variables $X_{1}, X_{2}, \ldots, X_{n}$ with $E\left(X_{1}\right)=\mu, \operatorname{Var}\left(X_{1}\right)=\sigma^{2}$, then for any $a<b$

Today: $X_{1} \sim \operatorname{Ber}(p)$; Last lecture: general case

CLT for Bernoulli distribution (approximation of Bin) If $X_{i} \sim \operatorname{Ber}(p)$ are independent, then $X_{1}+\cdots+X_{n} \sim \operatorname{Bin}(n, p)$

$$
E\left(X_{1}\right)=\quad \operatorname{Var}\left(X_{1}\right)=
$$

CLT for Bernoulli distribution:
Let $S_{n} \sim \operatorname{Bin}(n, p)$, let $a<b$. Then

We can rewrite (x) using $\bar{S}_{n}:=\frac{S_{n}}{n}$

CLT, approximation of Binomial distribution
Some numerics

Normal approximation. 3-sigma rule
We use the approximation of $\operatorname{Bin}(n, p)$ by the normal distribution if
In this case we can take

$$
P\left(a \leq \frac{S_{n}-n p}{\sqrt{n p(1-p)}} \leq b\right) \approx P(b)-P(a)
$$

In particular, in this case

- $P\left(\left|S_{n}-n p\right|<\quad\right) \approx \Phi(1)-\Phi(-1)=2 \Phi(1)-1=0.68$
- $P\left(\left|S_{n}-n p\right|<\quad\right) \approx P(2)-P(-2)=2 \Phi(2)-1=0.95$
- $P\left(\left|S_{n}-n p\right|<\quad\right) \approx \Phi(3)-\Phi(-3)=2 \Phi(3)-1=0.99$

CLT. Examples
Flipping a fair coin 10000 times
$X=$ number of tails
Find (approximately) $P(4950 \leq x \leq 5050)$

Z	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$
$\mathbf{0 . 0}$	0.5000	0.5040	0.5080
$\mathbf{0 . 1}$	0.5398	0.5438	0.5478
$\mathbf{0 . 2}$	0.5793	0.5832	0.5871
$\mathbf{0 . 3}$	0.6179	0.6217	0.6255
$\mathbf{0 . 4}$	0.6554	0.6591	0.6628
$\mathbf{0 . 5}$	0.6915	0.6950	0.6985
$\mathbf{0 . 6}$	0.7257	0.7291	0.7324
$\mathbf{0 . 7}$	0.7580	0.7611	0.7642
$\mathbf{0 . 8}$	0.7881	0.7910	0.7939
$\mathbf{0 . 9}$	0.8159	0.8186	0.8212
$\mathbf{1 . 0}$	0.8413	0.8438	0.8461
$\mathbf{1 . 1}$	0.8643	0.8665	0.8686

$$
\begin{aligned}
& X \sim \operatorname{Bin}\left(10000, \frac{1}{2}\right) \\
& E(X)= \\
& \sigma(X)= \\
& P(4950 \leq X \leq 5050)=
\end{aligned}
$$

CLT. Examples
You win $\$ 9$ with probability $\frac{1}{20}$, lose $\$ 1$ with prob. $\frac{19}{20}$. Approximate the probability that you lost $<100 \$$ after 400 games.
Denote by X the number of wins after 400 games $X \sim \operatorname{Bin}\left(400, \frac{1}{20}\right)$. $\quad n \cdot p \cdot(1-p)=$

Total winnings after 400 games:
We have to compute

$$
P(9 x-(400-x)>-100)=
$$

Law of Large Numbers
Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed, and let $E\left(X_{1}\right)=\mu \in \mathbb{R}$. Then for any $\varepsilon>0$

In particular, for $X_{1} \sim \operatorname{Ber}(p)$

