MATH 180A (Lecture A00)

mathwep.ucsod.edu/~ynemish/teaching/180a

Today: Definition of probability

Next: ASV 1.2

Week 1:

- check the course website
- homework 1 (due Friday, January 20)
- join Piazza

Probability theory
The goal of probability theory is to build mathematical models of experiments with random outcomes

Random outcome $=$ impossible to be predicted with certainty
1654: starting point, mathematical treatment of gambling problems (Fermat, Pascal)
1933: modern rigorous foundation of probability theory (Kolmogorov)

Warm-up problem
What is the probability that there are at least two student in this room having birthday on the same day (MM/DD)?

72 students, 365 possible birthday dates
(a) $<0.1 \%$
(b) $\approx 4 \%=\binom{72}{2} /\binom{365}{2}$
(c) $=20 \%=\frac{72}{365}$
$(d)>99.9 \%$
Moral: Intuition may be misleading

Axioms of probability
How to construct a mathematical model of an experiment with random outcome?
Def. Probability space is the triple (Ω, J, P), where

- Ω is the set of all possible outcomes of the experiment i we call it the sample space
- \mathcal{J} is a collection of subsets of Ω (events)
$\therefore P$ is a function that assigns to each event a real
$\frac{\mathbb{Z}}{\frac{T}{c}}$ number and satisfies the following properties:
(i) $0 \leq P(A) \leq 1$ for all $A \in \mathcal{F}$

$$
\begin{array}{ll}
A \cup B, \\
A \cap B, & A B \\
0 & \Omega \\
0 \\
0
\end{array}
$$

(ii) $P(\phi)=0, P(\Omega)=1$
(iii) If $A_{1}, A_{2}, A_{3}, \cdots$ are disjoint events, then

$$
P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots
$$

Examples
We call function P that satisfies properties (i) -(iii) a probability measure, or simply probability.

Example 1: Tossing a coin.

$$
\begin{gathered}
\Omega=\{H, T\}, F=\left\{\phi,\{H\},\{T\},\left\{H_{1}^{\prime \prime} T\right\}\right\}, P(\phi)=0, P(\Omega)=1 \\
P(\{H\})=\alpha, P(\{T\})=\beta=1-\alpha
\end{gathered}
$$

$\{H\}$ and $\{T\}$ are disjoint, therefore, by (iii)

$$
\alpha+\beta=P(\{H\})+P(\{T\})=P(\{H\} \cup\{T\})=P(\Omega)=1
$$

For any $\alpha \in[0,1]$ we have a different probability measure on Ω and \mathcal{F}.
Fair coin: $\alpha=\frac{1}{2}, P(\{H\})=P(\{T\})=\frac{1}{2}$

Examples
Example 2: rolling a fair die
$\Omega=\{1,2,3,4,5,6\} \quad, \quad J=\{$ all subsets of $\Omega\} \quad|F|=2^{6}$

$$
P(\{1\})=P(\{2\})=\cdots=P(\{6\})=\frac{1}{6}
$$

What about the events? Take $A=\{2,4,6\} \subset \Omega$.

$$
\begin{array}{ll}
P(A)=P(\{2\} \cup\{4\} \cup\{6\})=P(\{2\})+P(\{4\})+P(\{6\})=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2} \\
B=\{2,3,5\}: P(B)= & A=\text { "even number" } \\
C=\{3,6\}: P(C)= & B=\text { "prime number" } \\
P(A \cup B)= & C=\text { "divisible by } 3^{"} \\
P(B \cap C)= &
\end{array}
$$

