MATH 180A (Lecture A00)

mathwep.ucsod.edu/~ynemish/teaching/180a

Today: Definition of probability. Random sampling Next: ASV 1.3-1.4

Week 1:

- check the course website
- homework 1 (due January 20)
- join Piazza

Axioms of probability
Mathematical model of an experiment with random outcome
Def. Probability space is the triple (Ω, J, P), where

- Ω is the set of all possible outcomes of the experiment; we call it the sample space
- \mathcal{F} is a collection of subsets of Ω (events)
- P is a function that assigns to each event a real a number and satisfies the following properties:
© (i) $0 \leq P(A) \leq 1$ for all $A \in \mathcal{F}$
(ii) $P(\phi)=0, P(\Omega)=1$
(iii) If $A_{1}, A_{2}, A_{3}, \ldots$ are disjoint events, then

$$
P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots
$$

P is the probability measure (or simply probability)

Examples
Example 2: rolling a fair die
$\Omega=\{1,2,3,4,5,6\}, \quad J=\{$ all subsets of $\Omega\}$

$$
P(\{1\})=P(\{2\})=\cdots=P(\{6\})=\frac{1}{6}
$$

What about the events? Take $A=\{2,4,6\} \subset \Omega$.

$$
\begin{aligned}
& P(A)=P(\{2\})+P(\{4\})+P(\{6\})=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2} \\
& B=\{2,3,5\}: P(B)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2} \quad A=\text { "even number" } \\
& C=\{3,6\}: P(C)=\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \quad B=\text { "prime number" } \\
& P(A \cup B)=P(\{2,3,4,5,6\})=\frac{5}{6} \\
& P(B \cap C)=P(\{3\})=\frac{1}{6}
\end{aligned}
$$

Repeated experiments
What is the sample space if we toss the coin twice? The outcome is a pair with
The collection of such pairs is called the Cartesian product of $\{H, T\}$ and $\{H, T\}$, denoted $\{H, T\} \times\{H, T\}$

$$
\{H, T\} \times\{H, T\}=\{(H, H),(H, T),(T, H),(T, T)\} \longleftarrow
$$

sample space
More generally, for any sets $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{k}^{\text {sa }}$
sample space if we perform experiment I with s.s. Ω_{1}, experiment 2 with $s . \Omega_{2}$ experiment k with s.s. Ω_{k}

Finite sample space
Consider a special case when $\# \Omega<\infty$. Then

$$
\Omega=\quad \text { for } n=\# \Omega
$$

Any event $A \subset \Omega$ is a finite union of $\left\{w_{i}\right\}$. The singleton sets $\{\omega\},, \ldots,\left\{\omega_{n}\right\}$ are disjoint.
Therefore, if $A=\left\{a_{1}, \ldots, a_{k}\right\}$ for some $a_{i} \in \Omega$, then

$$
P(A)=
$$

What if additionally we have that $P\left(\left\{\omega_{1}\right\}\right)=\cdots=P\left(\left\{\omega_{n}\right\}\right)$?

Uniform probability measure and random sampling
If Ω is finite, the uniform probability measure is defined by the following property:
for each $\omega \in \Omega, P(\{\omega\})=$
From (*) this implies that
for any event $A, P(A)=$
This means that for such models calculating probabilities is reduced to counting.
Example Roll a fair dice twice. What is the probability that the sum is $4 ? \quad \Omega=\{(i, j): 1 \leq i, j \leq 6\}$,

$$
A=\{(1,3),(2,2),(3,1)\}, \quad P(A)=
$$

Uniform probability measure and random sampling
Example A fair coin is tossed 3 times.
$A=\{$ at least two tails $\}$
$B=\{$ exactly two tails $\}$

$$
\begin{array}{lr}
\Omega=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{i} \in\{H, T\}\right\}, & \# \Omega= \\
A= & , \# A= \\
B= & P(A)= \\
& P(B)=
\end{array}
$$

Warm-up exercise
There are 10 people on a committee.
How many different ways are there to select a subcommittee of 4 people?
(a) $10 \cdot 10 \cdot 10 \cdot 10=10^{4}=10000$
(b) $10 \cdot 9 \cdot 8 \cdot 7=5040$
(c) $\binom{10}{4}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4!}=210$
(d) $\frac{10!}{4!}=151200$

Combinatorics
(1) (2) A collection of n labelled balls $\{1,2,3, \ldots, n\}$ are in an urn. k are taken out one by one,
Q: How many ways?
Possible scenarios:
Replacement

- with replacement

Order

- without replacement - order does not matter

$n=5, k=3$ (choose 3 balls)	order matters	order doesn't matter
with replacement	000000	000000
without replacement	0000000	000000

Combinatorics
Sampling with replacement, order matters sample space: $\Omega=$
Sampling without replacement, order matters sample space: $\Omega=$
Sampling without replacement, order does not matter sample space: $\Omega=$

	order matters	order doesn't matter
with replacement	$\# \Omega=$	
without replacement	$\# \Omega=$ $=$	$\# \Omega=$
$=$		

Important remark. Examples
Each of these three models leads to a uniform probability measure! on the corresponding sample space
Example (sampling with replacement)
Toss a fair coin n times; record a statistic observing \# H vs \#T
Take $n=10$. Q: compute $P($ odd rolls are all $H)$

$$
\Omega=\left\{\left(c_{1}, c_{2}, \ldots, c_{10}\right): C_{j} \in\left\{H_{1} T\right\}\right\}, \# \Omega=
$$

Examples
Example (Sampling without replacement, order matters)
There are 6 labelled balls in an urn. 3 are removed in sequence (without replacement) and lined up in order.
Q: What is the probability that the first two

$$
\begin{aligned}
& \operatorname{are}(4,5) ? \\
\Omega= & \left\{\left(b_{1}, b_{2}, b_{3}\right): 1 \leq b_{j} \leq 6, b_{1} \neq b_{2}, b_{2} \neq b_{3}, b_{1} \neq b_{3}\right\}
\end{aligned}
$$

Examples
Example (Sampling without replacement, order does not matter)
00 An urn contains 10 balls: $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}$, two blue, three green, five red b_{8}, b_{9}, b_{10} 3 balls are chosen without replacement.
Q: Compute P (choose 2 green and one red)

$$
\# \Omega=
$$

