MATH 180A (Lecture A00)

mathwep.ucsod.edu/~ynemish/teaching/180a

Today: Definition of probability. Random sampling Next: ASV 2.1

Week 1:

- check the course website
- homework 1 (due Friday, January 20)
- join Piazza

Last time

If Ω is finite, the uniform probability measure is defined by the following property:
for each $\omega \in \Omega, P(\{\omega\})=\frac{1}{\# \Omega}$
From (*) this implies that
for any event $A, P(A)=\frac{\# A}{\# \Omega}$

Combinatorics
(1) (2) A collection of n labelled balls $\{1,2,3, \ldots, n\}$ are in an urn. k are taken out one by one,
Q: How many ways?
Possible scenarios:
Replacement

- with replacement - order balls come out matters
- without replacement - order does not matter

$n=5, k=3$ (choose 3 balls)	order matters	order doesn't matter
with replacement	(1) (2) (1) \neq (1) (1) (2) $\left(b_{1}, b_{2}, b_{3}\right)$	(1) (1) $=$ (1) (1) (2) (1) (1)
without replacement	(1) (2) (3) \neq (3) (2) (1) $\left(b_{1}, b_{2}, b_{3}\right), b_{i} \neq b_{j}$ if $i \neq j$	(1) (2) (3) = (3) (2) (1) $\left\{b_{1}, b_{2}, b_{3}\right\}$

Combinatorics
Sampling with replacement, order matters

$$
\Omega=\left\{\left(b_{1}, \ldots, b_{k}\right): 1 \leq b_{i} \leq n\right\}=\{1, \ldots, n\}^{k}
$$

Sampling without replacement, order matters

$$
\Omega=\left\{\left(b_{1}, \ldots, b_{k}\right): 1 \leq b_{j} \leq n, b_{i} \neq b_{j} \text { if } i \neq j\right\}
$$

Sampling without replacement, order does not matter

$$
\Omega=\left\{\left\{b_{1}, \ldots, b_{k}\right\}: 1 \leq b_{i} \leq n, b_{i} \neq b_{j} \text { if } i \neq j\right\}
$$

	order matters	order doesn't matter
with replacement	$\# \Omega=\underbrace{n \cdot n \cdots n}_{k}=n^{k}$	
without replacement	$\# \Omega=n \cdot(n-1) \cdots(n-k+1)$	$\# \Omega=\frac{n \cdot(n-1) \cdots(n-k+1)}{k!}$
if $k=n, \# \Omega=n!$		
ways to order n elements	$=\frac{n!}{(n-k)!}$	$=\frac{n!}{(n-k)!k!}=\binom{n}{k}$

Important remark. Examples
Each of these three models leads to a uniform probability measure!
on the corresponding sample space
Example (sampling with replacement)
Toss a fair coin n times; record a statistic observing
\#H vs \#T
Take $n=10$. Q: compute $P($ odd rolls are all $H)$

$$
\begin{aligned}
\Omega= & \left\{\left(c_{1}, c_{2}, \ldots, c_{10}\right): c_{j} \in\{H, T\}\right\}, \# \Omega=2^{10} \\
A= & \left\{c_{1}=c_{3}=c_{5}=c_{7}=c_{9}=H\right\}=\left\{\left(H, *, H 1^{*}, H, H^{*}, H_{1} *, H, *^{*}\right)\right\} \\
& \# A=2^{5}, \quad P(A)=\frac{\# A}{\# \Omega}=\frac{2^{5}}{2^{10}}=\frac{1}{2^{8}}=\frac{1}{32}
\end{aligned}
$$

Examples
Example (Sampling without replacement, order matters)
There are 6 labelled balls in an urn. 3 are removed in sequence (without replacement), and lined up in order.
Q: What is the probability that the first two

$$
\begin{aligned}
& \operatorname{are}(4,5) ? \\
\Omega= & \left\{\left(b_{1}, b_{2}, b_{3}\right): 1 \leq b_{j} \leqslant 6, b_{1} \neq b_{2}, b_{2} \neq b_{3}, b_{1} \neq b_{3}\right\} \\
\# \Omega= & 65 \cdot 4=120 \\
A= & \left\{\left(4,5, b_{3}\right), 1 \leqslant b_{3} \leqslant 6, b_{3} \neq 4, b_{3} \neq 5\right\}, \# A=4 \\
& P(A)=\frac{4}{120}=\frac{1}{30}
\end{aligned}
$$

Examples
Example (Sampling without replacement, order does not matter)
100 An urn contains 10 balls: $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}$, two blue, three green, five red b_{8}, b_{9}, b_{10} 3 balls are chosen without replacement.
Q: Compute P (choose 2 green and one red)
$\# \Omega=\binom{10}{3}=\frac{10!}{3!7!}=\frac{8 \cdot 9 \cdot 10}{2 \cdot 3}=120 \quad \sigma^{\text {\# ways to choose } 2 \text { green out of } 3}$
$A=\{2$ are green, 1 red $\}=\binom{3}{2}\binom{5}{1}=3.5=15$

$$
P(A)=\frac{\# A}{\# \Omega}=\frac{15}{120}=\frac{1}{8}
$$

Combinatorics

- selecting k objects among n, with replacement

$$
\text { \#ways = } n^{k}
$$

- selecting k objects among n, without replacement order matters

$$
\# \text { ways }=n(n-1)(n-2) \cdots(n-k+1) \quad(k \leq n)
$$

- selecting k objects among n, without replacement order doesnit matter

$$
\text { \# ways }=\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}
$$

- \# of ways to order n objects: $n(n-1) \cdots 1=n$!

Warm-up exercise
There are 10 people on a committee.
How many different ways are there to select a subcommittee of 4 people?
(a) $10 \cdot 10 \cdot 10 \cdot 10=10^{4}=10000$
(b) $10 \cdot 9 \cdot 8 \cdot 7=5040$
(c) $\binom{10}{4}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4!}=210$
(d) $\frac{10!}{4!}=151200$

Example
You have a deck of 52 cards (4 suits $\times 13$ ranks). You choose 5 cards uniformly at random.
What is the probability that you choose 3 cards of one rank +2 cards of another rank (full house)? $\Omega=$ sets (unordered) of 5 distinct cards, $\# \Omega=\binom{52}{5}$
$A=$ full house
\# choose rank of 2 cards $\quad\{a, b, c\}$

$$
P(\text { full house })=\frac{\# A}{\# \Omega}=\frac{13 \cdot\binom{4}{3} \cdot 12 \cdot\binom{4}{2}}{\binom{52}{5}}=\frac{3744}{2598960} \approx 0.1441 \%
$$

