MATH 180A (Lecture A00)

mathwep.ucsod.edu/~ynemish/teaching/180a

Today: Definition of probability. Random sampling Next: ASV 2.1

Week 1:

- check the course website
- homework 1 (due Friday, January 20)
- join Piazza

Last time

If Ω is finite, the uniform probability measure is defined by the following property:
for each $\omega \in \Omega, P(\{\omega\})=\frac{1}{\# \Omega}$
From (*) this implies that
for any event $A, P(A)=\frac{\# A}{\# \Omega}$

Combinatorics
(1) (2) A collection of n labelled balls $\{1,2,3, \ldots, n\}$ are in an urn. k are taken out one by one,
Q: How many ways?
Possible scenarios:
Replacement

- with replacement

Order

- without replacement - order does not matter

$n=5, k=3$ (choose 3balls)	order matters	order doesn't matter
with replacement	(1) (2) \neq (1) (1) (2) $\left(b, b_{2}, b_{3}\right)$	(1) (2) (1) = (1) (1) (2)
without replacement	(1) (2) (3) \neq (3) (2) (1) $\left(b_{1}, b_{2}, b_{3}\right), b_{i} \neq b_{j}$ if $i \neq j$	(1) (2) (3) = (3) (2) (1)
$\left\{b_{1}, b_{2}, b_{3}\right\}$		

Combinatorics
Sampling with replacement, order matters

$$
\Omega=\left\{\left(b_{1}, \ldots, b_{k}\right): 1 \leq b_{i} \leq n\right\}=\{1, \ldots, n\}^{k}
$$

Sampling without replacement, order matters

$$
\Omega=\left\{\left(b_{1}, \ldots, b_{k}\right): 1 \leq b_{j} \leqslant n, b_{i} \neq b_{j} \text { if } i \neq j\right\}
$$

Sampling without replacement, order does not matter

$$
\Omega=\left\{\left\{b_{1}, \ldots, b_{k}\right\}: 1 \leqslant b_{i} \leq n, b_{i} \neq b_{j} \text { if } i \neq j\right\}
$$

	order matters	order doesn't matter
with replacement	$\# \Omega=$	
without replacement	$\# \Omega=$	$\# \Omega=$
	$=$	$=$

Important remark. Examples
Each of these three models leads to a uniform probability measure! on the corresponding sample space
Example (sampling with replacement)
Toss a fair coin n times; record a statistic observing \# H vs \#T
Take $n=10$. Q: compute $P($ odd rolls are all $H)$

$$
\Omega=\left\{\left(c_{1}, c_{2}, \ldots, c_{10}\right): C_{j} \in\left\{H_{1} T\right\}\right\}, \# \Omega=
$$

Examples
Example (Sampling without replacement, order matters)
There are 6 labelled balls in an urn. 3 are removed in sequence (without replacement) and lined up in order.
Q: What is the probability that the first two

$$
\begin{aligned}
& \operatorname{are}(4,5) ? \\
\Omega= & \left\{\left(b_{1}, b_{2}, b_{3}\right): 1 \leq b_{j} \leq 6, b_{1} \neq b_{2}, b_{2} \neq b_{3}, b_{1} \neq b_{3}\right\}
\end{aligned}
$$

Examples
Example (Sampling without replacement, order does not matter)
00 An urn contains 10 balls: $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}$, two blue, three green, five red b_{8}, b_{9}, b_{10} 3 balls are chosen without replacement.
Q: Compute P (choose 2 green and one red)

$$
\# \Omega=
$$

Combinatorics

- selecting k objects among n, with replacement

$$
\text { \#ways = } n^{k}
$$

- selecting k objects among n, without replacement order matters

$$
\# \text { ways }=n(n-1)(n-2) \cdots(n-k+1) \quad(k \leq n)
$$

- selecting k objects among n, without replacement order doesnit matter

$$
\text { \# ways }=\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}
$$

- \# of ways to order n objects: $n(n-1) \cdots 1=n$!

Warm-up exercise
There are 10 people on a committee.
How many different ways are there to select a subcommittee of 4 people?
(a) $10 \cdot 10 \cdot 10 \cdot 10=10^{4}=10000$
(b) $10 \cdot 9 \cdot 8 \cdot 7=5040$
(c) $\binom{10}{4}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4!}=210$
(d) $\frac{10!}{4!}=151200$

Example
You have a deck of 52 cards (4 suits $\times 13$ ranks). You choose 5 cards uniformly at random.
What is the probability that you choose 3 cards of one rank +2 cards of another rank (full house)?

$$
\begin{aligned}
& \Omega= \\
& A= \\
& \# A=
\end{aligned}
$$

$$
\text { , } \# \Omega=\binom{52}{5}
$$

$$
P(\text { full house })=
$$

Infinite sample space
If $\# \Omega=\infty$, then we need a different notion of uniform probability measure.
Example A random number is chosen in $[0,1]$.
(a) What is the probability that it is ≥ 0.6
(b) What is the probability that it is $=\frac{1}{2}$
$(\Omega, F, P):$

If $\Omega=[a, b]$, then take

Infinite sample space

An archery target is a disk 50 cm in diameter
A blue disk is 25 cm in diameter A red disk is 5 cm in diameter

Given that you hit the target (randomly), what are the chances of hitting the blue disk? The red disk?

$$
\Omega=\operatorname{target}, P(A)=\quad, J=
$$

General rule:

Decompositions
Example A fair die is rolled 5 times. What is the probability that you get one at least 3 times?
$A=\{$ at least 3 ones $\}=$

$$
P(A)=
$$

Consider A_{3}, exactly 3 ones. How many ways?
1)
2)

Decompositions
Example A fair die is rolled 5 times. What is the probability that you get at least one double?
$A=\{$ some number comes up at least twice $\}$
$A_{k}=\{k$ comes up at least two times $\}$

$$
A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5} \cup A_{6}
$$

We can further decompose
$A_{1}=A_{1}^{2} \cup A_{1}^{3} \cup A_{1}^{4} \cup A_{1}^{5} \cup A_{1}^{6}, A_{1}^{j}=\{1$ comes up exactly j times $\}$

Easy solution:

$A \cap B$

Sometimes we have to take intersections in to account. Notation: $A \cup B=\{$ all outcomes in either A or B or both \} $A \cap B=\{$ all outcomes in both A and $B\}=A B$

$$
A \cup B=A B^{C} \cup A B \cup A^{c} B
$$

Principle of inclusion / exclusion
The probability of a union can be computed by adding the probabilities, then subtracting off the intersection overcounted. If you have more sets, you have to keep going and re-add back in over-subtracted pieces etc...

Principle of inclusion / exclusion
Example Among students enrolled in MATH 180 A 60% are Math majors
20% are Physics majors
5% are majoring in both Math and Physics
A student is chosen randomly from the class. What is the probability that this student is neither a Math major nor a Physics major?

$$
\begin{aligned}
& A=\{\text { Math }\} \\
& B=\{\text { Physics }\} \\
& C=\{\text { neither }\}
\end{aligned}
$$

