MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Consequences of the axioms of probability Next: ASV 1.3-1.4

Week 2:

- homework 1 (due Frictay, Jannary 20)

$$
\text { Monday. Jan } 23
$$

Infinite sample space
If $\# \Omega=\infty$, then we need a different notion of uniform probability measure.
Example A random number is chosen in $[0,1]$.
(a) What is the probability that it is ≥ 0.6
(b) What is the probability that it is $=\frac{1}{2}$
$(\Omega, F, P): \Omega=[0,1]$
(a) $P([0.6,1])=1-0.6=0.4$

$$
P([x, y])=y-x
$$

(b) $P\left(\left[\frac{1}{2}, \frac{1}{2}\right]\right)=\frac{1}{2}-\frac{1}{2}=0$

$$
\begin{aligned}
y-x=P([x, y]) & =P([x, y) \cup\{y\}) \\
& =P([x, y))+P(\{y\})
\end{aligned}
$$

If $\Omega=[a, b]$, then take $P([x, y])=\frac{y-x}{b-a}$ for $[x, y]<[a, b]$

Infinite sample space

An archery target is a disk 50 cm in diameter
A blue disk is 25 cm in diameter A red disk is 5 cm in diameter

Given that you hit the target (randomly), what are the chances of hitting the blue disk? The red disk?
$\Omega=$ target, $P(A)=\frac{\operatorname{Area}(A)}{\operatorname{Area}(\Omega)}, f=\{$ subsets with area $\}$

$$
P(\text { blue disk })=\frac{\pi\left(\frac{5}{2}\right)^{2}}{\pi\left(\frac{50}{2}\right)^{2}}=\frac{1}{100}
$$

General rule: uniform probability $P(A)=\frac{\text { "size" }(A)}{\operatorname{size}^{\prime}(\Omega)}$

Decompositions
Example A fair die is rolled 5 times. What is the probability that you get one at least 3 times?

$$
\begin{gathered}
A=\{\text { at least } 3 \text { ones }\}=A_{3} \cup A_{4} \cup A_{5} \\
P(A)=P\left(A_{3}\right)+P\left(A_{4}\right)+P\left(A_{5}\right) \quad A_{k}:=\{\text { exactly } k \text { ones }\}
\end{gathered}
$$

Consider A_{3}, exactly 3 ones. How many ways?

1) \# of configurations (patterns) $=\binom{5}{3}$
2) \# of ways for each configuration $=5^{2}$

$$
\begin{aligned}
& P\left(A_{3}\right)=\frac{\binom{5}{3} \cdot 5^{2}}{6^{5}}, P\left(A_{4}\right)=\frac{\binom{5}{4} \cdot 5}{6^{5}}, P\left(A_{5}\right)=\frac{\binom{5}{5} \cdot 1}{6^{5}} \\
& P(A)=\frac{1}{6^{5}}(10 \cdot 25+5 \cdot 5+1)=\frac{276}{7776} \approx 3.55 \%
\end{aligned}
$$

Decompositions
Example A fair die is rolled s times. What is the probability that you get at least one double?
$A=\{$ some number comes up at least twice $\}$
$A_{k}=\{k$ comes up at least two times $\}$

$$
A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5} \cup A_{6}
$$

We can further decompose
$A_{1}=A_{1}^{2} \cup A_{1}^{3} \cup A_{1}^{4} \cup A_{1}^{5} \cup A_{1}^{6}, A_{1}^{j}=\{1$ comes up exactly j times $\}$
$A_{1}, A_{2}, \ldots, A_{6}$ are not disjoint! Avoid overcounting!
Easy solution: consider the complement $A^{c}=\{$ no doubles $\}$

$$
\# A^{c}=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2=6!, P\left(A^{c}\right)=\frac{6!}{6^{5}}, P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)=1
$$

$A \cap B$

Sometimes we have to take intersections in to account. Notation: $A \cup B=\{$ all outcomes in either A or B or both \} $A \cap B=\{$ all outcomes in both A and $B\}=A B$

$$
\begin{aligned}
& A \cup B=\underbrace{A B^{C} \cup A B \cup A^{C} B}_{\text {disjoint }} \\
& P(A \cup B)=P(A)+P(B)-P(A B)
\end{aligned}
$$

Principle of inclusion / exclusion
The probability of a union can be computed by adding the probabilities, then subtracting off the intersection overcounted. If you have more sets, you have to keep going and re-add back in over-subtracted pieces etc...

$$
\begin{aligned}
& P(A \cup B \cup C)=P(A)+P(B)+P(C) \\
&- P(A B)-P(A C)-P(B C) \\
&+ P(A B C) \\
& P(A \cup B \cup C \cup B)=P(A)+P(B)+P(C)+P(D) \\
&-P(A B)-P(A C) \cdots \\
&+P(A B C)+P(A B D) \cdots \\
&-P(A B C D)
\end{aligned}
$$

