MATH 180A (Lecture A00)

mathweb.ucsd.edu/~ynemish/teaching/180a

Today: Consequences of the axioms of probability Next: ASV 1.3-1.4

Week 2:

homework 1 (due Friday, January 20)

Infinite sample space

If $\# \Omega = \infty$, then we need a different notion of uniform

probability measure.

Example A random number is chosen in [0,1].

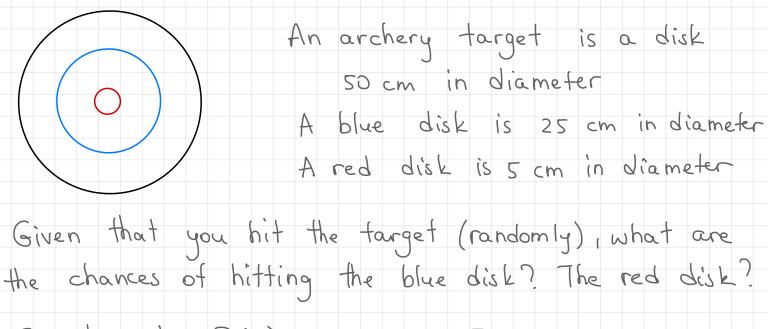
(a) What is the probability that it is ≥ 0.6

(b) What is the probability that it is $=\frac{1}{2}$

 (Ω, F, P) :

If $\Omega = [a, b]$, then take

Infinite sample space



 $\Omega = target, P(A) = , J =$

General rule:

Decompositions

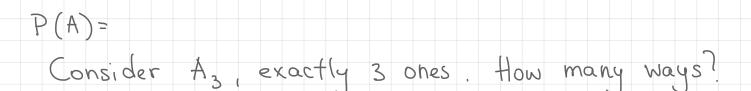
Example A fair die is rolled 5 times. What is

the probability that you get one at least 3 times !

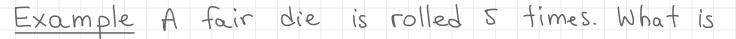
A={at least 3 ones }=

1)

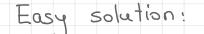
2)

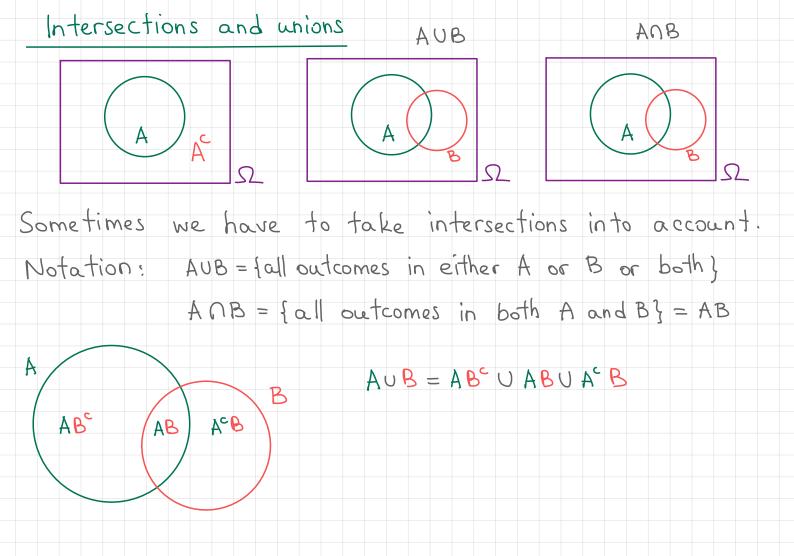


Decompositions



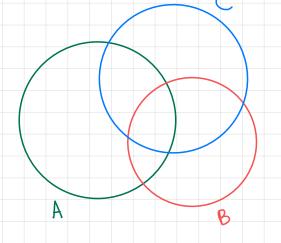
- the probability that you get at least one double?
 - A = { some number comes up at least twice }
 - Ak={k comes up at least two times}
 - A= A, UA2 UA3 UA4 UA5 UA6
 - We can further decompose
 - A1 = A2 UA3 UA1 UA5 UA1, A1 = { 1 comes up exactly j times}





Principle of inclusion / exclusion

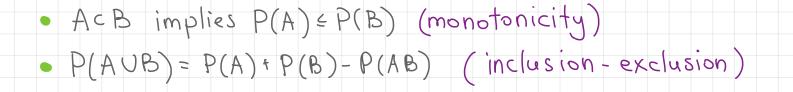
The probability of a union can be computed by adding the probabilities, then subtracting off the intersection overcounted. If you have more sets, you have to keep going and re-add back in over-subtracted pieces etc...



Principle of inclusion / exclusion

Example Among students enrolled in MATH 1804

- 60 % are Math majors
- 20% are Physics majors
 - 5% are majoring in both Math and Physics
- A student is chosen randomly from the class.
- What is the probability that this student is neither
- a Math major nor a Physics major?
 - A = { Math }
 - B = { Physics }
 - C = { neither }



P(A) + P(A^c) = 1 (events and their complements)

Useful tools

B

Monotonicity

A

In particular, $P(AUB) \ge \max{P(A), P(B)}$ $P(A\cap B) \le \min{P(A), P(B)}$

Indeed, P(B) =

<u>></u>

IF A = B, then

Conditional probability

Example 1. Your friend rolls two fair dice. What

is the probability the sum is 10.

$= A = \Omega$

P(A) =

Example 2 Your friend rolls two fair dice and tells you that the sum that came up is a two digit number. What is the probability that the sum is 10?

Conditional probability

- If we know that the event
- B happened
- keep the same Ω and F
- · define new probability \widetilde{P} on (Ω, \widetilde{F}) that takes

A

В

Ω

into account the additional information

Def Let BEF satisfy P(B)>0. Then for all AEF The conditional probability of A given B is defined as

Conditional probability

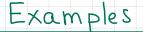
If P(B)>0, then the conditional probability P(·IB) satisfies all the properties of probability:

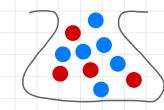
axioms of probability, probability of the complement,

monotonicity, inclusion - exclusion ...

<u>Remark</u> If Ω is finite and P is uniform, then P(AIB) =

Example Roll two fair dice. A={sum is loy, B={sum is a two-digit number}





An urn contains 4 red ball and 6 blue balls. Three balls are sampled without replacement. What is the probability that exactly two are red?

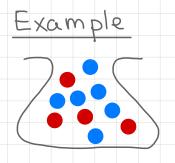
Suppose we know a priori that at least one red ball is sampled. What is the conditional probability of A?

Multiplication rule

By definition $P(B|A) = \frac{P(A\cap B)}{P(A)}$

For ANBNC : P(ANBNC) =

 \Rightarrow



An urn contains 4 red ball and 6 blue balls. Two balls are sampled without replacement. What is the probability that both are red?