MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Consequences of the axioms of probability Next: ASV 1.3-1.4

Week 2:

- homework 1 (due Friday, January 20)

Infinite sample space
If $\# \Omega=\infty$, then we need a different notion of uniform probability measure.
Example A random number is chosen in $[0,1]$.
(a) What is the probability that it is ≥ 0.6
(b) What is the probability that it is $=\frac{1}{2}$
$(\Omega, F, P):$

If $\Omega=[a, b]$, then take

Infinite sample space

An archery target is a disk 50 cm in diameter
A blue disk is 25 cm in diameter A red disk is 5 cm in diameter

Given that you hit the target (randomly), what are the chances of hitting the blue disk? The red disk?

$$
\Omega=\operatorname{target}, P(A)=\quad, J=
$$

General rule:

Decompositions
Example A fair die is rolled 5 times. What is the probability that you get one at least 3 times?
$A=\{$ at least 3 ones $\}=$

$$
P(A)=
$$

Consider A_{3}, exactly 3 ones. How many ways?
1)
2)

Decompositions
Example A fair die is rolled 5 times. What is the probability that you get at least one double?
$A=\{$ some number comes up at least twice $\}$
$A_{k}=\{k$ comes up at least two times $\}$

$$
A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5} \cup A_{6}
$$

We can further decompose
$A_{1}=A_{1}^{2} \cup A_{1}^{3} \cup A_{1}^{4} \cup A_{1}^{5} \cup A_{1}^{6}, A_{1}^{j}=\{1$ comes up exactly j times $\}$

Easy solution:

$A \cap B$

Sometimes we have to take intersections in to account. Notation: $A \cup B=\{$ all outcomes in either A or B or both \} $A \cap B=\{$ all outcomes in both A and $B\}=A B$

$$
A \cup B=A B^{C} \cup A B \cup A^{c} B
$$

Principle of inclusion / exclusion
The probability of a union can be computed by adding the probabilities, then subtracting off the intersection overcounted. If you have more sets, you have to keep going and re-add back in over-subtracted pieces etc...

Principle of inclusion / exclusion
Example Among students enrolled in MATH 180 A 60% are Math majors
20% are Physics majors
5% are majoring in both Math and Physics
A student is chosen randomly from the class. What is the probability that this student is neither a Math major nor a Physics major?

$$
\begin{aligned}
& A=\{\text { Math }\} \\
& B=\{\text { Physics }\} \\
& C=\{\text { neither }\}
\end{aligned}
$$

Monotonicity

If $A \subseteq B$, then
Indeed, $P(B)=$

$$
\geq
$$

In particular, $P(A \cup B) \geq \max \{P(A), P(B)\}$

$$
P(A \cap B) \leq \min \{P(A), P(B)\}
$$

Useful tools

- $P(A)+P\left(A^{c}\right)=1 \quad$ (events and their complements)
- $A \subset B$ implies $P(A) \leq P(B)$ (monotonicity)
- $P(A \cup B)=P(A)+P(B)-P(A B)$ (inclusion-exclusion)

Conditional probability
Example 1. Your friend rolls two fair dice. What is the probability the sum is 10 .

$$
\Omega=
$$

$$
A=
$$

$$
P(A)=
$$

Example 2 Your friend rolls two fair dice and tells you that the sum that came up is a two digit number. What is the probability that the sum is 10 ?

Conditional probability If we know that the event B happened

- keep the same Ω and \mathcal{F}

- define new probability \tilde{P} on (Ω, F) that takes into account the additional information

Def. Let $B \in F$ satisfy $P(B)>0$. Then for all $A \in \mathcal{F}$ the conditional probability of A given B is defined as

Conditional probability
If $P(B)>0$, then the conditional probability $P(\cdot \mid B)$ satisfies all the properties of probability: axioms of probability, probability of the complement, monotonicity, inclusion-exclusion...
Remark If Ω is finite and P is uniform, then

$$
P(A \mid B)=
$$

Example Roll two fair dice. $A=\{$ sum is 10$\}$, $B=\{$ sum is a two-digit number $\}$

Examples
An urn contains 4 red ball and 6 blue balls. Three balls are sampled without replacement. What is the probability that exactly two are red?

Suppose we know a priori that at least one red ball is sampled. What is the conditional probability of A?

Multiplication rule
By definition $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$

$$
\Rightarrow
$$

For $A \cap B \cap C: P(A \cap B \cap C)=$

Example

An urn contains 4 red ball and 6 blue balls. Two balls are sampled without replacement. What is the probability that both are red?

