MATH 180A (Lecture A00)

mathwep.ucsod.edu/~ynemish/teaching/180a

Today: Conditional probability

Next: ASV 2.2

Week 2:

- homework 1 (due Monday, January 23)

$A \cap B$

Sometimes we have to take intersections in to account. Notation: $A \cup B=\{$ all outcomes in either A or B or both \} $A \cap B=\{$ all outcomes in both A and $B\}=A B$

$$
A \cup B=A B^{C} \cup A B \cup A^{c} B
$$

Principle of inclusion / exclusion
Example Among students enrolled in MATH 180 A 60% are Math majors
20% are Physics majors
5% are majoring in both Math and Physics
A student is chosen randomly from the class. What is the probability that this student is neither a Math major nor a Physics major?

$$
\begin{aligned}
& A=\{\text { Math }\} \\
& B=\{\text { Physics }\} \\
& C=\{\text { neither }\}
\end{aligned}
$$

Warm-up question
Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demonstrations.

Which is more probable?

1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement.

Monotonicity

If $A \subseteq B$, then
Indeed, $P(B)=$

$$
\geq
$$

In particular, $P(A \cup B) \geq \max \{P(A), P(B)\}$

$$
P(A \cap B) \leq \min \{P(A), P(B)\}
$$

Useful tools

- $P(A)+P\left(A^{c}\right)=1 \quad$ (events and their complements)
- $A \subset B$ implies $P(A) \leq P(B)$ (monotonicity)
- $P(A \cup B)=P(A)+P(B)-P(A B)$ (inclusion-exclusion)

Conditional probability
Example 1. Your friend rolls two fair dice. What is the probability the sum is 10 .

$$
\Omega=
$$

$$
A=
$$

$$
P(A)=
$$

Example 2 Your friend rolls two fair dice and tells you that the sum that came up is a two digit number. What is the probability that the sum is 10 ?

Conditional probability If we know that the event B happened

- keep the same Ω and \mathcal{F}

- define new probability \tilde{P} on (Ω, F) that takes into account the additional information

Def. Let $B \in F$ satisfy $P(B)>0$. Then for all $A \in \mathcal{F}$ the conditional probability of A given B is defined as

Conditional probability
If $P(B)>0$, then the conditional probability $P(\cdot \mid B)$ satisfies all the properties of probability: axioms of probability, probability of the complement, monotonicity, inclusion-exclusion...
Remark If Ω is finite and P is uniform, then

$$
P(A \mid B)=
$$

Example Roll two fair dice. $A=\{$ sum is 10$\}$, $B=\{$ sum is a two-digit number $\}$

Examples
An urn contains 4 red ball and 6 blue balls. Three balls are sampled without replacement. What is the probability that exactly two are red?

Suppose we know a priori that at least one red ball is sampled. What is the conditional probability of A?

Multiplication rule
By definition $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$

$$
\Rightarrow
$$

For $A \cap B \cap C: P(A \cap B \cap C)=$

Example

An urn contains 4 red ball and 6 blue balls. Two balls are sampled without replacement. What is the probability that both are red?

Two-stage experiments

- perform an experiment, measure a random outcome
- perform a second experiment whose setup depends on the outcome of the first!
Example
- first choose an urn at random

- then sample a ball at random from the chosen urn
Q: What is the probability that the sampled ball is red? $R=\{$ sample red ball\}, $A=\{$ choose urn $A\}, B=\{$ choose urn $B\}$

Law of total probability
Let $B_{1}, B_{2}, \ldots, B_{n}$ be a partition of Ω
(i.e., B_{i} are disjoint, $B_{1} \cup B_{2} \cup \cdots \cup B_{n}=\Omega, P\left(B_{i}\right)>0$).

Then for every event A :

Example 90% of coins are fair, 9% are biased to come up heads 60% of times, 1\% are biased to come up heads 80%. You find a coin on the street.

How likely is it to come up heads?

Law of total probability
Define $A=\{$ coin comes up heads $\}, B_{1}=\{$ coin is fair $\}$ $B_{2}=\{$ coin is 60% biased $\} \quad B_{3}=\{$ coin is 80% biased $\}$

- B_{1}, B_{2}, B_{3} form a , and
- $P\left(A \mid B_{1}\right)=, P\left(A \mid B_{2}\right)=, P\left(A \mid B_{3}\right)=$

Then using the law of total probability

$$
\begin{aligned}
P(A) & = \\
& =
\end{aligned}
$$

Another question: In the same setting, you find a coin and toss it. It comes up heads. How likely is it that this coin is 80% biased (heavily biased)?

Important remark
We know that $P\left(A \mid B_{3}\right)=0.8$.
What can we say about $P\left(B_{3} \mid A\right)$?
Generally speaking,
Example According to Forbes, there are 2668 billionaires in the world, 2357 of them are men.

Example Prosecutor's fallacy:
$E=\{$ evidence on the defendant $\}$
$I=\{$ defendant is innocent $\}$

