MATH 180A (Lecture A00)

mathweb.ucsod.edu/~ynemish/teaching/180a

Today: Conditional probability. Independence Next: ASV 3.1

Week 3:

- homework 1 (due Monday, January 23)

Conditional probability
Def. Let $B \in F$ satisfy $P(B)>0$. Then for all $A \in \mathcal{F}$ the conditional probability of A given B is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

If $P(B)>0$, then the conditional probability $P(\cdot \mid B)$ satisfies all the properties of probability: axioms of probability, probability of the complement, monotonicity, inclusion-exclusion...
Remark If Ω is finite and P is uniform, then

$$
P(A \mid B)=\frac{\# A \cap B}{\# B}
$$

Multiplication rule
By definition $P(B \mid A)=\frac{P(A \cap B)}{P(A)} P(B) P(A \mid B)$ $\Rightarrow P(A \cap B)=P(A) \cdot P(B \mid A) \leftarrow \begin{gathered}\text { multiplication } \\ \text { rule }\end{gathered}$
For $A \cap B \cap C: P(A \cap B \cap C)=P(A B) P(C \mid A B)=P(A) P(B \mid A) P(C \mid A B)$
Example An urn contains 4 red balls and
 6 blue balls. Two balls are sampled without replacement. What is the probability that both are red?
$B_{1}=\left\{1^{s t}\right.$ ball is red $\} \quad P\left(B_{1} \cap B_{2}\right)=P\left(B_{1}\right) \cdot P\left(B_{2} \mid B_{1}\right)=\frac{4}{10} \cdot \frac{3}{9}=\frac{2}{15}$
$B_{2}=\left\{2^{\text {nd }}\right.$ ball is red $\} \quad P\left(B_{1}\right)=\frac{4}{10}, P\left(B_{2} \mid B_{1}\right)=\frac{3}{9}$

$$
\begin{aligned}
& \left.B_{2} \mid B_{1}\right)=\frac{3}{9} \\
& P\left(B_{1} \cap B_{C}\right)=\frac{\binom{4}{2}}{\binom{10}{2}}
\end{aligned}
$$

Two-stage experiments

- perform an experiment, measure a random outcome
- perform a second experiment whose setup depends on the outcome of the first!
Example
- first choose an urn at random

- then sample a ball at random from the chosen urn
Q: What is the probability that the sampled ball is red? $R=\{$ sample red ball\}, $A=\{$ choose urn $A\}, B=\{$ choose urn $B\}$

$$
\begin{aligned}
P(R)= & P((R \cap A) \cup(R \cap B))=P(R \cap A)+P(R \cap B) \\
& =P(A) P(R \mid A)+P(B) P(R \mid B) \\
& =\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{2}{5}=\frac{11}{30}
\end{aligned}
$$

Law of total probability
Let $B_{1}, B_{2}, \ldots, B_{n}$ be a partition of Ω
(ie., B_{i} are disjoint, $B_{1} \cup B_{2} \cup \cdots \cup B_{n}=\Omega, P\left(B_{i}\right)>0$).
Then for every event A :

$$
\begin{aligned}
P(A)=P\left(A B_{1} \cup A B_{2} \cup \cdots \cup A B_{n}\right) & =\sum_{i=1}^{n} P\left(A \cap B_{i}\right) \\
& =\sum_{i=1}^{n} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
\end{aligned}
$$

Example 90% of coins are fair, 9% are biased to come up heads 60% of times, 1\% are biased to come up heads 80%. You find a coin on the street.

How likely is it to come up heads?

Law of total probability
Define $A=\{$ coin comes up heads $\}, B_{1}=\{$ coin is fair $\}$ $B_{2}=\{$ coin is 60% biased $\} \quad B_{3}=\{$ coin is 80% biased $\}$

- B_{1}, B_{2}, B_{3} form a partition and

$$
P\left(B_{1}\right)=0.9, \quad P\left(B_{2}\right)=0.09, P\left(B_{3}\right)=0.01
$$

- $P\left(A \mid B_{1}\right)=0.5 \quad P\left(A \mid B_{2}\right)=0.6 \quad P\left(A \mid B_{3}\right)=0.8$

Then using the law of total probability

$$
\begin{aligned}
P(A) & =P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)+P\left(B_{3}\right) P\left(A \mid B_{3}\right) \\
& =0.9 \cdot 0.5+0.09 \cdot 0.6+0.01 \cdot 0.8=0.512
\end{aligned}
$$

Another question: In the same setting, you find a coin and toss it. It comes up heads. How likely is it that this coin is 80% biased (heavily biased)?

Important remark
We know that $P\left(A \mid B_{3}\right)=0.8$.
What can we say about $P\left(B_{3} \mid A\right)$?
Generally speaking, $P(A \mid B) \neq P(B \mid A)$
Example According to Forbes, there are 2668 billionaires in the world, 2357 of them are men.

$$
P(M \mid B)=\frac{235 t}{2668} \approx 88 \% \neq P(B \mid M)
$$

Example Prosecutor's fallacy:
$E=\{$ evidence on the defendant $\}$
$I=\{$ defendant is innocent $\}$
Althoug $P(E \mid I)$ is usually small, $P(I \mid E)$ may be much higher

Bayes' Rule (relation between $P(A \mid B)$ and $P(B \mid A)$)

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(B) P(A \mid B)}{P(A)}
$$

This formula is often used with the law of total probability. Let $B_{1}, B_{2}, \ldots, B_{n}$ be a partition of the sample space. Then for any event A with $P(A)>0$

$$
P\left(B_{k} \mid A\right)=\frac{P\left(B_{k}\right) P\left(A \mid B_{k}\right)}{P(A)}=\frac{P\left(B_{k}\right) P\left(A \mid B_{k}\right)}{\sum_{i=1}^{n} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

Example. $A=\{$ coin comes up heads $\}, B_{1}=\{$ coin is fair $\}$ $B_{2}=\{$ coin is 60% biased $\} \quad B_{3}=\{$ coin is 80% biased $\}$
Given: $P\left(B_{1}\right)=0.9, P\left(B_{2}\right)=0.09, P\left(B_{3}\right)=0.01 P\left(A \mid B_{1}\right)=0.5, P\left(A \mid B_{2}\right)=0.6$, We have computed that $P(A)=\sum_{i=1}^{3} P\left(B_{i}\right) P\left(A \mid B_{i}\right)=0.512 P\left(A \mid B_{3}\right)=0.8$ Then $P\left(B_{3} \mid A\right)=\frac{0.01 \cdot 0.8}{0.512} \approx 0.0156$

Bayes' rule
Example
Suppose that a certain test (e.g., virus X test) is 99% accurate (1% false positives, 1% false negatives).
0.25% of the population have this virus.
You test positive. What is the probability you have this virus?
(a) $99 \% \quad T=\left\{\right.$ positive test\} $\quad P\left(T \mid V^{c}\right)=0.01 \quad P\left(T^{c} \mid V\right)=0.01$
(b) $20 \% \quad V=\{$ has virus $\} \quad P(V)=0.0025$
(c) $1 \% \quad \Omega=V U V^{c} \quad P(T \mid V)=1-P\left(T^{c} \mid V\right)=0.99$
(d) 0.3%
(e) not enough information

$$
P(V \mid T)=\frac{P(T \mid V) P(V)}{P(T)}=\frac{P(T \mid V) P(V)}{P(T \mid V) P(V)+P\left(T \mid V^{c}\right) P\left(V^{c}\right)}=\frac{0.99 \cdot 0.0025}{0.99 \cdot 0.0025+0.010} \mathbf{(0 . 9 9 7 5)}
$$

Ω

What if $P(V)=2.5 \%$? $P(V I T)=72 \%$ prior inputs!
$P(V)=25 \% ? \quad P(V \mid T)=97 \%$

