MATH 180A (Lecture A00)

mathweb.ucsd.edu/~ynemish/teaching/180a

Today: Conditional probability. Independence Next: ASV 3.1

Week 3:

homework 1 (due Monday, January 23)

Conditional probability

Def Let BEJ satisfy P(B)>0. Then for all AEJ The conditional probability of A given B is defined as

$P(A|B) = \frac{P(A\cap B)}{P(B)}$

IF P(B)>0, then the conditional probability P(·IB) satisfies all the properties of probability:

axioms of probability, probability of the complement,

monotonicity, inclusion - exclusion ...

Remark If Ω is finite and P is uniform, then

$$P(A|B) = \frac{\#AB}{\#B}$$

Multiplication rule

=> P(ANB)=P(A) P(BIA) < multiplication rule

For $A \cap B \cap C$: $P(A \cap B \cap C) = P(AB) P(C \cap AB) = P(A) P(A \cap B) P(C \cap AB)$

An urn contains 4 red ball and 6 blue balls. Two balls are sampled without replacement. What is the probability that both are red?

Two-stage experiments

- perform an experiment, measure a random outcome
- · perform a second experiment whose setup depends on
 - the outcome of the first!

Let B, Bz, ..., Bn be a partition of Ω

(i.e., Bi are disjoint, $B_1 \cup B_2 \cup \cdots \cup B_n = \Omega$, $P(B_i) > 0$).

Then for every event A:

 $P(A) = P(AB_1 \cup A B_2 \cup \cdots \cup A B_n)$

Example 90% of coins are fair, 9% are biased to come up

heads 60% of times, 1% are biased to come up heads 80%. You

find a coin on the street.

How likely is it to come up heads?

Law of total probability

Define A={coin comes up heads }, B1={ coin is fair }

B2 = { coin is 60% biased } B3 = { coin is 80% biased }

B, B2, B3 form a and

• $P(A|B_1) = P(A|B_2) = P(A|B_3) =$

Then using the law of total probability

P(A) =

Another question: In the same setting, you find a coin and toss it. It comes up heads. How likely is it that this coin is 80% biased (heavily biased)?

Important remark

We know that P(AIB3) = 0.8.

What can we say about P(B3 1 A)?

Generally speaking,

Example According to Forbes, there are 2668 billionaires in the world, 2357 of them are men.

Example Prosecutor's fallacy:

E = { evidence on the defendant }

I = { defendant is innocent }

Bayes' Rule (relation between P(AIB) and P(BIA)) P(BIA) =

This formula is often used with the law of total probability Let $B_1, B_2, ..., B_n$ be a partition of the sample space. Then for any event A with P(A) > 0 $P(B_k|A) =$

Example. A = {coin comes up heads }, B₁ = { coin is fair } B₂ = { coin is 60% biased } B₃ = { coin is 80% biased } Given: P(B₁) = , P(B₂) = , P(B₃) = P(A|B₁) = , P(A|B₂) = , P(A|B₃) = P(A|B₃) = P(A|B₁) = 0.512 We have computed that $P(A) = \sum_{i=1}^{3} P(B_i)P(A|B_i) = 0.512$

Bayes' rule

Example

Suppose that a certain test (e.g., virus X test) is

99% accurate (1% false positives, 1% false negatives).

0.25% of the population have this virus.

You test positive. What is the probability you have this virus!

(a) 99°/.

(b) 20%

(c) 1%

(d) 0.3%

(e) not enough information

The Monty Hall Problem

You play the following game. There are three doors. Each door hides a prize. Behind one door there

is a car, behind two other doors - goats. (not open) You choose one door. The host opens one of the

doors you did not choose, revealing a goat. You are

now given a possibility to either stick with your

original choice, or switch to the other closed door.

Should you switch? (a) Yes (b) No (c) Doesn't matter

The Monty Hall Problem

Let's call the door you choose #1. In this case Monty

will open door #2 or door #3. Suppose Monty opens #2.

Bi = { the car is behind door # i }

A = { Monty opens door #2}

We want to know

 $P(B_3|A) =$

Independence

We have seen how knowing that event B occurred may change the probability of event A, P(A) vs. P(AIB) What if we have two events A and B that have nothing to do with each other?

A and B have nothing to do with each other is not the same as A and B being disjoint! Example Flip a coin 3 times. A= {-the first coin is heads} B = { the second coin is tails }

A = { HAH, HAT, HTH, HTT } The first toss has no influence B = { TTT, TTH, HTH, HTT } on the second toss

Independence

if

Def Two events A and B are (statistically) independent

Example

An urn has 4 red and 6 blue balls.

Two balls are sampled.

Are A and B independent?

(a) Yes

(b) No

(c) Not enough information

Independence

Example

An urn has 4 red and 6 blue balls.

Two balls are sampled.

A= { 1st ball is red } B= { 2nd ball is blue }

Are A and B independent?

1) choose balls with replacement

 $P(A) = P(A \cap B) =$

P(B)=

2) choose balls without replacement

P(A) = P(A ∩ B) = P(B) = A and B are