MATH 180A (Lecture A00)

mathweb.ucsd.edu/~ynemish/teaching/180a

Today: Independence. Random variables Next: ASV 3.2

Week 3:

homework 1 (due Monday, January 23)

The Monty Hall Problem

You play the following game. There are three doors. Each door hides a prize. Behind one door there

is a car, behind two other doors - goats. (not open) You choose one door. The host opens one of the

doors you did not choose, revealing a goat. You are

now given a possibility to either stick with your

original choice, or switch to the other closed door.

Should you switch? (a) Yes (b) No (c) Doesn't matter

The Monty Hall Problem

Let's call the door you choose #1. In this case Monty

will open door #2 or door #3. Suppose Monty opens #2.

Bi = { the car is behind door # i }

A = { Monty opens door #2}

We want to know

 $P(B_3|A) =$

We have seen how knowing that event B occurred may change the probability of event A, P(A) vs. P(AIB) What if we have two events A and B that have nothing to do with each other?

A and B have nothing to do with each other is not the same as A and B being disjoint! Example Flip a coin 3 times. A= {-The first coin is heads} B = { the second coin is tails }

A = { HHH, HHT, HTH, HTT } The first toss has no influence B = {TTT, TTH, HTH, HTT } on the second toss

if

Def Two events A and B are (statistically) independent

Example

An urn has 4 red and 6 blue balls.

Two balls are sampled.

Are A and B independent?

(a) Yes

(b) No

(c) Not enough information

Example

An urn has 4 red and 6 blue balls.

Two balls are sampled.

A= { 1st ball is red } B= { 2nd ball is blue }

Are A and B independent?

1) choose balls with replacement

 $P(A) = P(A \cap B) =$

P(B) =

2) choose balls without replacement

P(A) = P(A ∩ B) = P(B) = A and B are

A and B are independent

if and only if A and B are independent

Independence for more than two events Def. A collection of events A, Az,..., An is

mutually independent if for any subcollection

of events Ai, Aiz,..., Aik with Isi, Liz <... Lik sn

Example For n=3, A, B, C are mutually independent if P(A ∩ B) = P(A ∩ C) = P(B ∩ C) =

Suppose that A and B are independent. A and C are independent, B and C are independent.

Important example

- Toss a coin
 - A = { there is exactly one tails in the first two tosses }
 - B = { there is exactly one tails in the last two tosses }
 - C = { there is exactly one tails in the first and last tosses }
 - $A = \{ (H,T,*), (T,H,*) \} B = \{ (*,H,T), (*,T,H) \}$
 - $C = \{ (H, *, T), (T, *, H) \}$
 - P(A) P(B) P(C)
 - $P(A \cap B) = P(B \cap C) P(A \cap C)$
 - $P(A \cap B \cap C) =$

Random variables

Probability distribution

Def Let X be a random variable. The probability distribution of X is the collection of probabilities

Remark

Examples 1) Coin toss: $\Omega = \{H, T\}, X(H) = I, X(T) = 0$

(fair coin)

2) Roll a die: Ω={1,2,3,4,5,6}

For any 15156,

Probability distribution

3) Roll a die twice : Ω = { (i,j) : i, je 11, 2, ..., 63}

-	6	•
		100
1)	97	1ne
\sim	- 1	• • • =

