MATH 180A (Lecture A00)

mathwep.ucsod.edu/~ynemish/teaching/180a

Today: Random variables

Next: ASV 3.2

Week 3:

- homework 2 (due Sunday, January 29)
- Midterm 1 (Wednesday, February 1, lectures 1-8)
- 5 homework extension days per student per quarter

Independence for more than two events
Def. A collection of events $A_{1}, A_{2}, \ldots, A_{n}$ is mutually independent if for any subcollection of events A_{i}, A_{i}, \ldots, Air with $1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant n$

$$
P\left(A_{1} \cap A i_{2} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{k}}\right)
$$

Example For $n=3, A, B, C$ are mutually independent if $P(A \cap B)=P(A) P(B)$

$$
\begin{aligned}
& P(A \cap C)=P(A) P(C) \\
& P(B \cap C)=P(B) P(C) \\
& P(A \cap B \cap C)=P(A) P(B) P(C)
\end{aligned}
$$

Suppose that A and B are independent. A and C are independent, B and C are independent. Are A, B, C mutually independent?

Important example
Toss a coin
$A=\{$ there is exactly one tails in the first two tosses\}
$B=\{$ there is exactly one tails in the last two tosses $\}$
$C=\{$ there is exactly one tails in the first and last tosses\}

$$
\begin{aligned}
& A=\{(H, T, *),(T, H, *)\} \quad B=\{(*, H, T),(*, T, H)\} \\
& C=\{(H, *, T),(T, *, H)\} \\
& P(A)=\frac{4}{8}=\frac{1}{2}=P(B)=P(C) \\
& P(A \cap B)=\frac{2}{8}=\frac{1}{4}=P(B \cap C)=P(A \cap C) . \\
& P(A \cap B \cap C)=0
\end{aligned}
$$

Random variables
(Ω, \mathcal{F}, P) - probability space
Def A (measurable ${ }^{+}$) function $X: \Omega \rightarrow \mathbb{R}$ is called a random variable.

Example Toss a coin. $\Omega=\{H, T\}$. Define $X: \Omega \rightarrow \mathbb{R}$

Probability distribution
Def Let X be a random variable. The probability distribution of X is the collection of probabilities

Remark

Examples 1) Coin toss: $\Omega=\{H, T\}, X(H)=1, X(T)=0$ (fair coin)
2) Roll a die: $\Omega=\{1,2,3,4,5,6\}$,

For any $1 \leq i \leq 6$.

Probability distribution
3) Roll a die twice: $\Omega=\{(i, j): i, j \in\{1,2, \cdots, 6\}\}$

Define

$$
\begin{array}{ll}
P(S=2)=\frac{1}{36} & P(S=7)=\frac{6}{36} \\
P(S=3)=\frac{2}{36} & P(S=8)=\frac{5}{36} \\
P(S=4)=\frac{3}{36} & P(S=9)=\frac{4}{36} \\
P(S=5)=\frac{4}{36} & P(S=10)=\frac{3}{36} \\
P(S=6)=\frac{5}{36} & P(S=11)=\frac{2}{36} \\
& P(S=12)=\frac{1}{36}
\end{array}
$$

Probability distribution
4) Choosing a point from unit disk uniformly at random

$$
\Omega=\left\{\omega \in \mathbb{R}^{2}: \operatorname{dist}(0, \omega) \leq 1\right\}
$$

For any $r<0$, For any $r>1$.

For any $0 \leq r \leq 1, P(X \leq r)=$

Probability distribution
If (Ω, F, P) is a probability space, and $X: \Omega \rightarrow \mathbb{R}$ is a random variable, we can define a probability measure μ_{x} on \mathbb{R} given, for any $A \subset \mathbb{R}$, by

We call μ_{x} the probability distribution (or law) of X.
5) Toss a fair coin 4 times.

$$
\begin{aligned}
& \Omega=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\{H, T\}^{4}\right\} \\
& P=\text { uniform on } \Omega \\
& P\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=
\end{aligned}
$$

If $A \subset \mathbb{R}$ does not contain one of these numbers, then

Enough to know

Probability distribution
Toss a fair coin 4 times. Let $X=$ number of tails.

$$
\begin{aligned}
& X \in\{0,1,2,3,4\} \\
& P_{x}(k)=P(X=k)
\end{aligned}
$$

k	0	1	2	3	4
$P_{x}(k)$					

More generally, if $X=$

$$
P_{x}(k)=P(X=k)=
$$

We call this distribution

Probability distribution
4) Choose point w from unit disk uniformly at random

$$
\begin{aligned}
& X(\omega)=\operatorname{dist}(0, \omega) \\
& P(X \leq r)= \begin{cases}0, & r<0 \\
r^{2}, & 0 \leq r \leq 1 \\
1, & r>1\end{cases}
\end{aligned}
$$

What can we say about $P(X \in A)$ for other sets $A \subset \mathbb{R}$? Take $A=(0.3,0.4]$,

Discrete and continuous random variables
Discrete: There are finitely (or countably) many possible outcomes $\left\{k_{1}, k_{2}, k_{3}, \ldots\right\}$ for X μ_{x} is described by the probability mass function

In this case, by the laws of probability

Continuous: For any real number $t \in \mathbb{R}$, μ_{x} is captured by understanding $P(X \leq r)$ as a function of r For example,

Cumulative Distribution Function (CDF) For any random variable X, define

$$
F_{X}(r)=P(X \leq r)
$$

Example: $\quad X \sim \operatorname{Bin}\left(3, \frac{1}{2}\right)$

K	0	1	2	3
$P_{x}(K)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

$$
\left.\right|_{0} ^{\left.F_{x}(r)\right|_{i} \quad i_{3}} r
$$

Properties of the CDF $\quad F_{X}(r)=P(X \leq r)$
(1) Monotone increasing:
(2) $\lim _{r \rightarrow-\infty} F_{x}(r)=0, \lim _{r \rightarrow+\infty} F_{x}(r)=1$
(3) The function F_{X} is right-continuous:

$$
\lim _{t \rightarrow r_{+}} F_{x}(t)=F_{x}(r)
$$

Corollary: If X is a continuous random variable, F_{x} is a
Example Shoot an arrow at a circular target of radius 1 (choose point from unit disk uniformly at random)

$$
F_{x}(r)= \begin{cases}0, & r \leq 0 \\ r^{2}, & 0 \leq r \leq 1 \\ 1, & r \geq 1\end{cases}
$$

Cumulative distribution function (CDF)
Summary: For any random variable $X, F_{X}(r)=P(X \leq r)$
(1) Monotone increasing: $s \leq t \Rightarrow F_{x}(s) \leq F_{x}(t)$
(2) $\lim _{r \rightarrow-\infty} F_{x}(r)=0, \lim _{r \rightarrow+\infty} F_{x}(r)=1$
(3) Right-continuous: $\lim _{t \rightarrow r_{+}} F_{x}(t)=F_{x}(r)$

