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1. (10 points) You have an urn that initially contains 6 red balls, 2 black balls and 1 green ball.
On the first step, you choose one ball uniformly at random from the urn, look at its color, and
then return it back to the urn together with one more ball of the same color (e.g., if you pick a
red ball, then you put it back to the urn together with another red ball). Then on the second
step you choose a ball uniformly at random from the urn (note that on the second step the urn
contains the additional ball).

What is the probability that on the second step you choose a red ball?

Solution.

Denote

A = {ball chosen on the first step is red}, B = {ball chosen on the second step is red}. (1)

Then using the law of total probability

P (B) = P (B|A)P (A) + P (B|AC)P (AC) =
7

10
· 6

9
+

6

10
· 3

9
=

2

3
. (2)
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2. (10 points) Every morning Frank chooses how to commute to work: by car or by bicycle. He
chooses bicycle with probability 0.7. The probability that Frank is late to work if he rides a
bicycle is 0.1, and the probability that he is late if he drives a car is 0.2. Frank is late today.
What is the probability, that he came to work by bicycle?

Solution. Denote events:

B = {Frank goes by bicycle}, (3)

C = BC = {Frank goes by car}, (4)

L = {Frank is late}. (5)

It is given that

P (B) = 0.7, P (L|B) = 0.1, P (L|BC) = 0.2. (6)

We have to find P (B|L).

From Bayes’ formula we have

P (B|L) =
P (L|B)P (B)

P (L|B)P (B) + P (L|BC)P (BC)
(7)

=
0.1 · 0.7

0.1 · 0.7 + 0.2 · 0.3
=

0.07

0.13
=

7

13
. (8)
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3. (10 points) Consider a point P = (X,Y ) chosen uniformly at random inside the rectangle in
R2 with vertices (0, 0), (0, 1), (2, 0) and (2, 1). Let Z = max(X,Y ) be the random variable
defined as the maximum of the two coordinates of the point. [Hint. Draw a picture.]

(a) Compute and plot the cumulative distribution function of Z.

Solution. Denote Z = max{X,Y } and R = {(x, y) ∈ R2 : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}.
Denote also As = {(x, y) ∈ R2 : max{x, y} ≤ s}. Then from the definition of the uniform
distribution

P (Z ≤ s) = P ((X,Y ) ∈ As) =
Area(As)

Area(R)
. (9)

For 0 ≤ s ≤ 1 we have Area(As) = s2, and for 1 ≤ s ≤ 2 we have Area(As) = s (see the
picture below)

Then

FZ(s) = P (Z ≤ s) =


0, s < 0,
s2

2 , 0 ≤ s < 1,
s
2 , 1 ≤ s < 2,
1, s ≥ 2.

(10)
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(b) Determine if Z is continuous, discrete or neither. If continuous, determine the probability
density function of Z. If discrete, determine the probability mass function of Z. If neither,
explain why.

Solution. Random variable Z is continuous and its density is

fZ(s) =


0, s < 0,
s, 0 ≤ s < 1,
1
2 , 1 ≤ s < 2,
0, s ≥ 2.

(11)
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4. (10 points) A study showed that 2% of San Diego residents own a boat.

(a) Estimate the probability that among 100 randomly interviewed San Diego residents there
are at least 3 boat owners.

(b) Explain why the approximation that you used in part (a) is better compared to other
approximations that you know.

[For full credit, present your answer in the closed form (not as an infinite series); you may leave
your answer in terms of ex or Φ(x)]

Solution.

(a) If X is the number is interviewed residents of San Diego that own boat. Then X ∼
Bin(100, 0.02). To compute the probability P (X ≥ 3) we first rewrite it as

P (X ≥ 3) = 1− P (X ≤ 2) = 1− P (X = 0)− P (X = 1)− P (X = 2), (12)

and then use the Poisson approximation of the binomial distribution with λ = 100·0.02 = 2

P (X ≥ 2) ≈ 1− e−2 − 2e−2 − 22

2
e−2 = 1− 5e−2. (13)

(b) Using the criterion from Lecture 14, compute the bounds for the approximation error for
normal and Poisson approximations of Bin(100, 0.02). The error in the Poisson approxi-
mation is bounded by

np2 = 100 · (0.02)2 = 0.04, (14)

while the error in the normal approximation is bounded by

1√
np(1− p)

=
1√

100 · 0.02 · 0.98
≈ 0.7. (15)

By comparing the above numbers it is clear that the Poisson distribution ensures better
approximation.
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5. (10 points) Let X and Y be independent random variables uniformly distributed on the interval
[0, 1], i.e., X ∼ U [0, 1], Y ∼ U [0, 1].

(a) Compute the moment generating function of the sum X + Y .

(b) Show that for any t ∈ R

(et − 1)2 = e2t − 2et + 1 =
∞∑
k=2

2k

k!
tk −

∞∑
k=2

2

k!
tk. (16)

(c) Use the results of (a) and (b) to compute E((X + Y )n), moments of the sum, for any
n ∈ N.

Solution.

(a) Compute the moment generating function: for any t ∈ R

MX+Y (t) = E(et(X+Y )) = E(etX)E(etY ) =

∫ 1

0
etxdx

∫ 1

0
etydy =

(et − 1)2

t2
(17)

(b) The first equality is the expansion of the square of a difference, and the second equality
follows from the power series expansion of the exponential function

e2t = 1 + 2t+
∞∑
k=2

2k

k!
tk, 2et = 2 + 2t+

∞∑
k=2

2

k!
tk, (18)

e2t − 2et + 1 = (1 + 2t− 2− 2t+ 1) +
∞∑
k=2

2k

k!
tk −

∞∑
k=2

2

k!
tk. (19)

(c) From (a) and (b) we have that

MX+Y (t) =

∑∞
k=2

2k−2
k! t

k

t2
=

∞∑
k=2

2k − 2

k!
tk−2, (20)

by changing n = k − 2

∞∑
k=2

2k − 2

k!
tk−2 =

∞∑
n=0

2n+2 − 2

(n+ 1)(n+ 2)
· t

n

n!
(21)

and we conclude that

E((X + Y )n) =
2n+2 − 2

(n+ 1)(n+ 2)
. (22)
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6. (10 points) Suppose that X ∼ Geom(p) and Y ∼ Geom(q) are independent random variables.
Find the probability P (X < Y ).

Solution.

We decompose the desired probability as

P (X < Y ) =
∞∑
k=1

P (X < Y,X = k) =
∞∑
k=1

P (X = k, Y > k) =
∞∑
k=1

P (X = k)P (Y > k).

Since X ∼ Geom(p), we have P (X = k) = p(1− p)k−1. Similarly, since Y ∼ Geom(q), we have
P (Y > k) = (1− q)k. So,

P (X < Y ) =

∞∑
k=1

P (X = k)P (Y > k)

=
∞∑
k=1

p(1− p)k−1(1− q)k

= p(1− q)
∞∑
k=1

((1− p)(1− q))k−1

= p(1− q) 1

1− (1− p)(1− q)
.
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7. (10 points) Suppose that X1, . . . , Xn are i.i.d. random variables with X1 ∼ Unif[0, 1]. Let
Y = min(X1, . . . , Xn). Find the CDF FY and density fY .

Solution.

Note that Y ∈ [0, 1]. So, FY (t) = 0 if t < 0 and FY (t) = 1 if t > 1. For t ∈ [0, 1],

FY (t) = P (Y ≤ t)
= 1− P (Y > t)

= 1− P (min(X1, . . . , Xn) > t)

= 1−
n∏

i=1

P (Xi > t) = 1− (1− t)n.

Differentiating, we see that

fY (t) =

{
n(1− t)n−1 if t ∈ [0, 1];

0 if t 6∈ [0, 1].
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8. (10 points) Let T be the triangle in R2 with vertices (0, 0), (0, 1), and (1, 1) (including the
interior). Suppose that P = (X,Y ) is a point chosen uniformly at random inside of T .

(a) What is the joint density function of (X,Y )? Use this to compute Cov(X,Y ).

Solution.

The joint density of (X,Y ) is

f(X,Y ) =

{
1

Area(T ) = 2 if (x, y) ∈ T ;

0 if (x, y) 6∈ T.

We compute the covariance using the formula Cov(X,Y ) = E(XY )− E(X)E(Y ):

E(XY ) =

∫ 1

0

∫ 1

x
2xy dydx

=

∫ 1

0

(
xy2
)∣∣∣∣1

x

dy

=

∫ 1

0
x− x3 dy

=

(
x2

2
− x4

4

)∣∣∣∣1
0

=
1

2
− 1

4
=

1

4
.

Similarly,

E(X) =

∫ 1

0

∫ 1

x
2x dydx

=

∫ 1

0
2x− 2x2 dx

=

(
x2 − 2x3

3

)∣∣∣∣1
0

= 1− 2

3
=

1

3

and

E(Y ) =

∫ 1

0

∫ 1

x
2y dydx

=

∫ 1

0

(
y2
∣∣∣∣1
x

)
dx

=

∫ 1

0
1− x2 dx

=

(
x− x3

3

)∣∣∣∣1
0

= 1− 1

3
=

2

3
.

So, Cov(X,Y ) = 1
4 −

1
3
2
3 = 1

4 −
2
9 > 0.

(b) Determine if X and Y are independent.

Solution.

X and Y are not independent because Cov(X,Y ) 6= 0.


