MATH 180C HOMEWORK 8

SPRING 2023

Due date: Friday 6/9/2023 11:59 PM (via Gradescope)

Note that there are *Exercises* and *Problems* in the textbook. Make sure you read the homework carefully to find the assigned question.

1. Pinsky and Karlin, Exercise 8.1.2. Let $\{B(t); t \geq 0\}$ be a standard Brownian motion and c > 0 a constant. Show that the process defined by $W(t) = cB(t/c^2)$ is a standard Brownian motion.

Solution. Denote $X(t) := cB(t/c^2)$. Consider the function $g : [0, +\infty) \to [0, +\infty)$ given by $g(x) = x/c^2$. Function g is a continuous bijection from $[0, +\infty)$ to $[0, +\infty)$, therefore, if B is continuous, then $B(g(t)) = B(t/c^2)$ is continuous on $[0, +\infty)$, and thus $cB(t/c^2)$ is also continuous on $[0, +\infty)$. Since P(B(t)) is continuous $(0, +\infty)$ is continuous $(0, +\infty)$ is continuous $(0, +\infty)$ is continuous $(0, +\infty)$. With probability 1 the process $(0, +\infty)$ has continuous trajectories.

Next, fix any $0 \le t_1 < t_2 < \cdots < t_n$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. Then

$$\sum_{i=1}^{n} \alpha_i X(t_i) = \sum_{i=1}^{n} \alpha_i cB(t_i/c^2)$$

has normal distribution (since B(t) is Gaussian). We conclude that X(t) is a Gaussian process with continuous sample paths.

Finally, compute the mean and the covariance function of X(t). It is easy to see that for any t > 0

$$E(X(t)) = E(cB(t/c^2)) = 0.$$

For the covariance function we have

$$Cov(X(s), X(t)) = Cov(cB(s/c^{2}), cB(t/c^{2}))$$

$$= c^{2}Cov(B(s/c^{2}), B(t/c^{2}))$$

$$= c^{2}\min\{s/c^{2}, t/c^{2}\}$$

$$= \min\{s, t\}.$$

We see that $(X(t))_{t\geq 0}$ is a Gaussian stochastic process with continuous sample paths, mean 0 and covariance function $\Gamma(s,t)=\min\{s,t\}$. Thus, $(X(t))_{t\geq 0}$ is a Brownian motion.

2. Pinsky and Karlin, Exercise 8.1.3. (a) Show that

$$\frac{d\phi(x)}{dx} = \phi'(x) = -x\phi(x),$$

2 SPRING 2023

where

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

(b) Use the result in (a) together with the chain rule of differentiation to show that

$$p(y,t|x) = \phi_t(y-x) = \frac{1}{\sqrt{t}}\phi\left(\frac{y-x}{\sqrt{t}}\right)$$

satisfies the diffusion equation

(1)
$$\frac{\partial p}{\partial t} = \frac{1}{2}\sigma^2 \frac{\partial^2 p}{\partial x^2}.$$

Solution. (a) We use direct computation

$$\phi'(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}(-x) = -x\phi(x).$$

(b) We have to verify that $p(y,t|x) = \frac{1}{\sqrt{t}}\phi\left(\frac{y-x}{\sqrt{t}}\right)$ satisfies (1) with $\sigma^2 = 1$. First we compute the partial derivative with respect to t

$$\begin{split} \frac{\partial}{\partial t} \bigg(\frac{1}{\sqrt{t}} \phi \Big(\frac{y-x}{\sqrt{t}} \Big) \bigg) &= -\frac{1}{2t^{3/2}} \phi \Big(\frac{y-x}{\sqrt{t}} \Big) + \frac{1}{\sqrt{t}} \Big(-\frac{y-x}{\sqrt{t}} \Big) \phi \Big(\frac{y-x}{\sqrt{t}} \Big) \Big(-\frac{y-x}{2t^{3/2}} \Big) \\ &= -\frac{1}{2t^{3/2}} \phi \Big(\frac{y-x}{\sqrt{t}} \Big) \bigg(1 - \frac{(y-x)^2}{t} \bigg). \end{split}$$

Now compute the second derivative with respect to x

$$\frac{\partial}{\partial x} \left(\frac{1}{\sqrt{t}} \phi \left(\frac{y - x}{\sqrt{t}} \right) \right) = -\frac{1}{\sqrt{t}} \left(\frac{y - x}{\sqrt{t}} \right) \phi \left(\frac{y - x}{\sqrt{t}} \right) \left(-\frac{1}{\sqrt{t}} \right)$$
$$= \frac{y - x}{t^{3/2}} \phi \left(\frac{y - x}{\sqrt{t}} \right),$$

and

$$\begin{split} \frac{\partial^2}{\partial x^2} \bigg(\frac{1}{\sqrt{t}} \phi \Big(\frac{y-x}{\sqrt{t}} \Big) \bigg) &= -\frac{1}{t^{3/2}} \phi \Big(\frac{y-x}{\sqrt{t}} \Big) + \frac{y-x}{t^{3/2}} \frac{\partial}{\partial x} \bigg(\phi \Big(\frac{y-x}{\sqrt{t}} \Big) \bigg) \\ &= -\frac{1}{t^{3/2}} \phi \Big(\frac{y-x}{\sqrt{t}} \Big) + \frac{y-x}{t^{3/2}} \frac{y-x}{t^{3/2}} \phi \Big(\frac{y-x}{\sqrt{t}} \Big) \\ &= -\frac{1}{t^{3/2}} \phi \Big(\frac{y-x}{\sqrt{t}} \Big) \bigg(1 - \frac{(y-x)^2}{t^{3/2}} \bigg). \end{split}$$

We see that

$$\frac{\partial}{\partial t} \left(\frac{1}{\sqrt{t}} \phi \left(\frac{y - x}{\sqrt{t}} \right) \right) = \frac{1}{2} \frac{\partial^2}{\partial x^2} \left(\frac{1}{\sqrt{t}} \phi \left(\frac{y - x}{\sqrt{t}} \right) \right).$$

- 3. Pinsky and Karlin, Exercise 8.1.4. Consider a standard Brownian motion $\{B(t); t \ge 0\}$ at times 0 < u < u + v < u + v + w, where u, v, w > 0.
 - (a) Evaluate the product moment E(B(u)B(u+v)B(u+v+w)).
 - (b) Evaluate the product moment E(B(u)B(u+v)B(u+v+w)B(u+v+w+x)), where x>0.

Solution. (a) We represent B(u+v+w) as a sum of independent Gaussian random variables

$$E(B(u)B(u+v)B(u+v+u)) = E(B(u)B(u+v)(B(u+v) + (B(u+v+w) - B(u+v))))$$

$$= E(B(u)B(u+v)B(u+v)) + E(B(u)B(u+v)(B(u+v+w) - B(u+v)))$$

$$= E(B(u)(B(u+v))^{2}),$$

where we used that B(u)B(u+v) and B(u+v+w)-B(u+v) are independent and E(B(u+v+w)-B(u+v))=0. Next we represent B(u+v) as a sum of independent Gaussian random variables

$$E(B(u)(B(u+v))^{2}) = E(B(u)(B(u) + B(u+v) - B(u))^{2})$$

$$= E(B(u)((B(u))^{2} + 2B(u)(B(u+v) - B(u)) + (B(u+v) - B(u))^{2}))$$

$$= E((B(u))^{3}) + 2E((B(u))^{2}(B(u+v) - B(u))) + E(B(u)(B(u+v) - B(u))^{2})$$

$$= 0 + 0 + 0 = 0.$$

(b) Now we do the same with E(B(u)B(u+v)B(u+v+w)B(u+v+w+x))

$$E(B(u)B(u+v)B(u+v+w)B(u+v+w+x))$$

$$= E(B(u)B(u+v)(B(u+v+w))^{2})$$

$$= E(B(u)B(u+v)(B(u+v)+B(u+v+w)-B(u+v))^{2})$$

$$= E(B(u)(B(u+v))^{3}) + E(B(u)B(u+v)(B(u+v+w)-B(u+v))^{2})$$

$$= E(B(u)(B(u)+B(u+v)-B(u))^{3}) + wE(B(u)(B(u)+B(u+v)-B(u)))$$

$$= E((B(u))^{4}) + 3E((B(u))^{2}(B(u+v)-B(u))^{2}) + uw$$

$$= 3u^{2} + 3uv + uw = u(3u + 3v + w).$$

- 4. Pinsky and Karlin, Exercise 8.1.5. Determine the covariance functions for the stochastic processes
 - (a) $U(t) = e^{-t}B(e^{2t})$, for $t \ge 0$
 - (b) V(t) = (1-t)B(t/(1-t)), for $0 \le t \le 1$
 - (c) W(t) = tB(1/t), with W(0) = 0.
 - B(t) is standard Brownian motion.

4 SPRING 2023

Solution. (a)

$$Cov(U(s), U(t)) = Cov(e^{-s}B(e^{2s}), e^{-t}B(e^{2t}))$$

$$= e^{-(s+t)}Cov(B(e^{2s}), B(e^{2t}))$$

$$= e^{-(s+t)}\min\{e^{2s}, e^{2t}\}$$

$$= e^{-(s+t-2\min\{s,t\})} = e^{-(\max\{s,t\}-\min\{s,t\})} = e^{-|s-t|}$$

(b)

$$\begin{aligned} \operatorname{Cov}(V(s),V(t)) &= \operatorname{Cov}\Big((1-s)B(s/(1-s)),(1-t)B(t/(1-t))\Big) \\ &= (1-s)(1-t)\operatorname{Cov}\Big(B(s/(1-s)),B(t/(1-t))\Big) \\ &= (1-s)(1-t)\min\{s/(1-s),t/(1-t)\} \\ &= (1-s)(1-t)\min\{s,t\}/(1-\min\{s,t\}) \\ &= (1-\max\{s,t\})\min\{s,t\} = \min\{s,t\} - \max\{s,t\}\min\{s,t\} \\ &= \min\{s,t\} - st. \end{aligned}$$

(c)

$$Cov(W(s), W(t)) = Cov(sB(1/s), tB(1/t))$$
= $stCov(B(1/s), B(1/t))$
= $st \min\{1/s, 1/t\}$
= $st/\max\{s, t\} = \min\{s, t\}$.

- 5. Pinsky and Karlin, Exercise 8.1.6. Consider a standard Brownian motion $\{B(t); t \ge 0\}$ at times 0 < u < u + v < u + v + w, where u, v, w > 0.
 - (a) What is the probability distribution of B(u) + B(u + v)?
 - (b) What is the probability distribution of B(u) + B(u+v) + B(u+v+w)?

Solution. Since B(t) is a Gaussian process, B(u) + B(u + v) and B(u) + B(u + v) + B(u + v + w) have Gaussian distribution. It is easy to see that both random variables have zero expectation. It is enough to compute the variance of each of these random variables.

(a)

$$\operatorname{Var}\left(B(u) + B(u+v)\right)$$

$$= \operatorname{Cov}\left(B(u) + B(u+v), B(u) + B(u+v)\right)$$

$$= \operatorname{Cov}\left(B(u), B(u)\right) + 2\operatorname{Cov}\left(B(u), B(u+v)\right) + \operatorname{Cov}\left(B(u+v), B(u+v)\right)$$

$$= u + 2u + (u+v) = 4u + v,$$
thus $B(u) + B(u+v) \sim N(0, 4u+v)$.

(b)
$$\operatorname{Var}\left(B(u) + B(u+v) + B(u+v+w)\right)$$

$$= \operatorname{Cov}\left(B(u) + B(u+v) + B(u+v+w), B(u) + B(u+v) + B(u+v+w)\right)$$

$$= \operatorname{Cov}\left(B(u), B(u)\right) + 2\operatorname{Cov}\left(B(u), B(u+v)\right) + 2\operatorname{Cov}\left(B(u), B(u+v+w)\right)$$

$$+ \operatorname{Cov}\left(B(u+v), B(u+v)\right) + 2\operatorname{Cov}\left(B(u+v), B(u+v+w)\right)$$

$$+ \operatorname{Cov}\left(B(u+v+w), B(u+v+w)\right)$$

$$= u + 2u + 2u + (u+v) + 2(u+v) + (u+v+w) = 9u + 4v + w,$$
thus $B(u) + B(u+v) + B(u+v+w) \sim N(0, 9u + 4v + w).$

6. Pinsky and Karlin, Problem 8.1.4. Let $\alpha_1, \ldots, \alpha_n$ be real constants. Argue that

$$\sum_{i=1}^{n} \alpha_i B(t_i)$$

is normally distributed with mean zero and variance

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \min\{t_i, t_j\}.$$

Solution. Denote $Z := \sum_{i=1}^{n} \alpha_i B(t_i)$. Since B(t) is a Gaussian process, Z has normal distribution. Now compute the mean and the variance of Z:

$$E(Z) = E\left(\sum_{i=1}^{n} \alpha_i B(t_i)\right) = \sum_{i=1}^{n} \alpha_i E\left(B(t_i)\right) = 0,$$

and

$$Var(Z) = Var\left(\sum_{i=1}^{n} \alpha_{i}B(t_{i})\right)$$

$$= Cov\left(\sum_{i=1}^{n} \alpha_{i}B(t_{i}), \sum_{j=1}^{n} \alpha_{j}B(t_{j})\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i}\alpha_{j}Cov\left(B(t_{i}), B(t_{j})\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i}\alpha_{j}\min\{t_{i}, t_{j}\}.$$