MATH 180C HOMEWORK 8

SPRING 2023

Due date: Friday 6/9/2023 11:59 PM (via Gradescope)
Note that there are Exercises and Problems in the textbook. Make sure you read the homework carefully to find the assigned question.

1. Pinsky and Karlin, Exercise 8.1.2. Let $\{B(t) ; t \geq 0\}$ be a standard Brownian motion and $c>0$ a constant. Show that the process defined by $W(t)=c B\left(t / c^{2}\right)$ is a standard Brownian motion.

Solution. Denote $X(t):=c B\left(t / c^{2}\right)$. Consider the function $g:[0,+\infty) \rightarrow[0,+\infty)$ given by $g(x)=x / c^{2}$. Function g is a continuous bijection from $[0,+\infty)$ to $[0,+\infty)$, therefore, if B is continuous, then $B(g(t))=B\left(t / c^{2}\right)$ is continuous on $[0,+\infty)$, and thus $c B\left(t / c^{2}\right)$ is also continuous on $[0,+\infty)$. Since $P(B(t)$ is continuous $)=1$, we conclude that $P(X(t)$ is continuous $)=1$, with probability 1 the process $X(t)$ has continuous trajectories.

Next, fix any $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}$. Then

$$
\sum_{i=1}^{n} \alpha_{i} X\left(t_{i}\right)=\sum_{i=1}^{n} \alpha_{i} c B\left(t_{i} / c^{2}\right)
$$

has normal distribution (since $B(t)$ is Gaussian). We conclude that $X(t)$ is a Gaussian process with continuous sample paths.

Finally, compute the mean and the covariance function of $X(t)$. It is easy to see that for any $t \geq 0$

$$
E(X(t))=E\left(c B\left(t / c^{2}\right)\right)=0 .
$$

For the covariance function we have

$$
\begin{aligned}
\operatorname{Cov}(X(s), X(t)) & =\operatorname{Cov}\left(c B\left(s / c^{2}\right), c B\left(t / c^{2}\right)\right) \\
& =c^{2} \operatorname{Cov}\left(B\left(s / c^{2}\right), B\left(t / c^{2}\right)\right) \\
& =c^{2} \min \left\{s / c^{2}, t / c^{2}\right\} \\
& =\min \{s, t\} .
\end{aligned}
$$

We see that $(X(t))_{t \geq 0}$ is a Gaussian stochastic process with continuous sample paths, mean 0 and covariance function $\Gamma(s, t)=\min \{s, t\}$. Thus, $(X(t))_{t \geq 0}$ is a Brownian motion.
2. Pinsky and Karlin, Exercise 8.1.3. (a) Show that

$$
\frac{d \phi(x)}{d x}=\phi^{\prime}(x)=-x \phi(x)
$$

where

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

(b) Use the result in (a) together with the chain rule of differentiation to show that

$$
p(y, t \mid x)=\phi_{t}(y-x)=\frac{1}{\sqrt{t}} \phi\left(\frac{y-x}{\sqrt{t}}\right)
$$

satisfies the diffusion equation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\frac{1}{2} \sigma^{2} \frac{\partial^{2} p}{\partial x^{2}} \tag{1}
\end{equation*}
$$

Solution. (a) We use direct computation

$$
\phi^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}(-x)=-x \phi(x)
$$

(b) We have to verify that $p(y, t \mid x)=\frac{1}{\sqrt{t}} \phi\left(\frac{y-x}{\sqrt{t}}\right)$ satisfies (1) with $\sigma^{2}=1$. First we compute the partial derivative with respect to t

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{1}{\sqrt{t}} \phi\left(\frac{y-x}{\sqrt{t}}\right)\right) & =-\frac{1}{2 t^{3 / 2}} \phi\left(\frac{y-x}{\sqrt{t}}\right)+\frac{1}{\sqrt{t}}\left(-\frac{y-x}{\sqrt{t}}\right) \phi\left(\frac{y-x}{\sqrt{t}}\right)\left(-\frac{y-x}{2 t^{3 / 2}}\right) \\
& =-\frac{1}{2 t^{3 / 2}} \phi\left(\frac{y-x}{\sqrt{t}}\right)\left(1-\frac{(y-x)^{2}}{t}\right)
\end{aligned}
$$

Now compute the second derivative with respect to x

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{t}} \phi\left(\frac{y-x}{\sqrt{t}}\right)\right) & =-\frac{1}{\sqrt{t}}\left(\frac{y-x}{\sqrt{t}}\right) \phi\left(\frac{y-x}{\sqrt{t}}\right)\left(-\frac{1}{\sqrt{t}}\right) \\
& =\frac{y-x}{t^{3 / 2}} \phi\left(\frac{y-x}{\sqrt{t}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{\sqrt{t}} \phi\left(\frac{y-x}{\sqrt{t}}\right)\right) & =-\frac{1}{t^{3 / 2}} \phi\left(\frac{y-x}{\sqrt{t}}\right)+\frac{y-x}{t^{3 / 2}} \frac{\partial}{\partial x}\left(\phi\left(\frac{y-x}{\sqrt{t}}\right)\right) \\
& =-\frac{1}{t^{3 / 2}} \phi\left(\frac{y-x}{\sqrt{t}}\right)+\frac{y-x}{t^{3 / 2}} \frac{y-x}{t^{3 / 2}} \phi\left(\frac{y-x}{\sqrt{t}}\right) \\
& =-\frac{1}{t^{3 / 2}} \phi\left(\frac{y-x}{\sqrt{t}}\right)\left(1-\frac{(y-x)^{2}}{t^{3 / 2}}\right)
\end{aligned}
$$

We see that

$$
\frac{\partial}{\partial t}\left(\frac{1}{\sqrt{t}} \phi\left(\frac{y-x}{\sqrt{t}}\right)\right)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(\frac{1}{\sqrt{t}} \phi\left(\frac{y-x}{\sqrt{t}}\right)\right)
$$

3. Pinsky and Karlin, Exercise 8.1.4. Consider a standard Brownian motion $\{B(t) ; t \geq$ $0\}$ at times $0<u<u+v<u+v+w$, where $u, v, w>0$.
(a) Evaluate the product moment $E(B(u) B(u+v) B(u+v+w))$.
(b) Evaluate the product moment $E(B(u) B(u+v) B(u+v+w) B(u+v+w+x))$, where $x>0$.

Solution. (a) We represent $B(u+v+w)$ as a sum of independent Gaussian random variables

$$
\begin{aligned}
E & (B(u) B(u+v) B(u+v+ \\
& =E(B(u) B(u+v)(B(u+v)+(B(u+v+w)-B(u+v)))) \\
& =E(B(u) B(u+v) B(u+v))+E(B(u) B(u+v)(B(u+v+w)-B(u+v))) \\
& =E\left(B(u)(B(u+v))^{2}\right),
\end{aligned}
$$

where we used that $B(u) B(u+v)$ and $B(u+v+w)-B(u+v)$ are independent and $E(B(u+v+w)-B(u+v))=0$. Next we represent $B(u+v)$ as a sum of independent Gaussian random variables

$$
\begin{aligned}
& E\left(B(u)(B(u+v))^{2}\right)=E\left(B(u)(B(u)+B(u+v)-B(u))^{2}\right) \\
& \quad=E\left(B(u)\left((B(u))^{2}+2 B(u)(B(u+v)-B(u))+(B(u+v)-B(u))^{2}\right)\right) \\
& \quad=E\left((B(u))^{3}\right)+2 E\left((B(u))^{2}(B(u+v)-B(u))\right)+E\left(B(u)(B(u+v)-B(u))^{2}\right) \\
& \quad=0+0+0=0
\end{aligned}
$$

(b) Now we do the same with $E(B(u) B(u+v) B(u+v+w) B(u+v+w+x))$

$$
\begin{aligned}
E & (B(u) B(u+v) B(u+v+w) B(u+v+w+x)) \\
& =E\left(B(u) B(u+v)(B(u+v+w))^{2}\right) \\
& =E\left(B(u) B(u+v)(B(u+v)+B(u+v+w)-B(u+v))^{2}\right) \\
& =E\left(B(u)(B(u+v))^{3}\right)+E\left(B(u) B(u+v)(B(u+v+w)-B(u+v))^{2}\right) \\
& =E\left(B(u)(B(u)+B(u+v)-B(u))^{3}\right)+w E(B(u)(B(u)+B(u+v)-B(u))) \\
& =E\left((B(u))^{4}\right)+3 E\left((B(u))^{2}(B(u+v)-B(u))^{2}\right)+u w \\
& =3 u^{2}+3 u v+u w=u(3 u+3 v+w) .
\end{aligned}
$$

4. Pinsky and Karlin, Exercise 8.1.5. Determine the covariance functions for the stochastic processes
(a) $U(t)=e^{-t} B\left(e^{2 t}\right)$, for $t \geq 0$
(b) $V(t)=(1-t) B(t /(1-t))$, for $0 \leq t \leq 1$
(c) $W(t)=t B(1 / t)$, with $W(0)=0$.
$B(t)$ is standard Brownian motion.

Solution. (a)

$$
\begin{aligned}
\operatorname{Cov}(U(s), U(t)) & =\operatorname{Cov}\left(e^{-s} B\left(e^{2 s}\right), e^{-t} B\left(e^{2 t}\right)\right) \\
& =e^{-(s+t)} \operatorname{Cov}\left(B\left(e^{2 s}\right), B\left(e^{2 t}\right)\right) \\
& =e^{-(s+t)} \min \left\{e^{2 s}, e^{2 t}\right\} \\
& =e^{-(s+t-2 \min \{s, t\})}=e^{-(\max \{s, t\}-\min \{s, t\})}=e^{-|s-t|} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Cov}(V(s), V(t)) & =\operatorname{Cov}((1-s) B(s /(1-s)),(1-t) B(t /(1-t))) \\
& =(1-s)(1-t) \operatorname{Cov}(B(s /(1-s)), B(t /(1-t))) \\
& =(1-s)(1-t) \min \{s /(1-s), t /(1-t)\} \\
& =(1-s)(1-t) \min \{s, t\} /(1-\min \{s, t\}) \\
& =(1-\max \{s, t\}) \min \{s, t\}=\min \{s, t\}-\max \{s, t\} \min \{s, t\} \\
& =\min \{s, t\}-s t .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\operatorname{Cov}(W(s), W(t)) & =\operatorname{Cov}(s B(1 / s), t B(1 / t)) \\
& =s t \operatorname{Cov}(B(1 / s), B(1 / t)) \\
& =s t \min \{1 / s, 1 / t\} \\
& =s t / \max \{s, t\}=\min \{s, t\} .
\end{aligned}
$$

5. Pinsky and Karlin, Exercise 8.1.6. Consider a standard Brownian motion $\{B(t) ; t \geq$ $0\}$ at times $0<u<u+v<u+v+w$, where $u, v, w>0$.
(a) What is the probability distribution of $B(u)+B(u+v)$?
(b) What is the probability distribution of $B(u)+B(u+v)+B(u+v+w)$?

Solution. Since $B(t)$ is a Gaussian process, $B(u)+B(u+v)$ and $B(u)+B(u+$ $v)+B(u+v+w)$ have Gaussian distribution. It is easy to see that both random variables have zero expectation. It is enough to compute the variance of each of these random variables.
(a)

$$
\begin{aligned}
\operatorname{Var} & (B(u)+B(u+v)) \\
\quad= & \operatorname{Cov}(B(u)+B(u+v), B(u)+B(u+v)) \\
= & \operatorname{Cov}(B(u), B(u))+2 \operatorname{Cov}(B(u), B(u+v))+\operatorname{Cov}(B(u+v), B(u+v)) \\
= & u+2 u+(u+v)=4 u+v \\
& \quad \text { thus } B(u)+B(u+v) \sim N(0,4 u+v)
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Var} & (B(u)+B(u+v)+B(u+v+w)) \\
= & \operatorname{Cov}(B(u)+B(u+v)+B(u+v+w), B(u)+B(u+v)+B(u+v+w)) \\
= & \operatorname{Cov}(B(u), B(u))+2 \operatorname{Cov}(B(u), B(u+v))+2 \operatorname{Cov}(B(u), B(u+v+w)) \\
& \quad+\operatorname{Cov}(B(u+v), B(u+v))+2 \operatorname{Cov}(B(u+v), B(u+v+w)) \\
& \quad+\operatorname{Cov}(B(u+v+w), B(u+v+w)) \\
= & u+2 u+2 u+(u+v)+2(u+v)+(u+v+w)=9 u+4 v+w, \\
\quad & \quad \text { thus } B(u)+B(u+v)+B(u+v+w) \sim N(0,9 u+4 v+w) .
\end{aligned}
$$

6. Pinsky and Karlin, Problem 8.1.4. Let $\alpha_{1}, \ldots, \alpha_{n}$ be real constants. Argue that

$$
\sum_{i=1}^{n} \alpha_{i} B\left(t_{i}\right)
$$

is normally distributed with mean zero and variance

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \min \left\{t_{i}, t_{j}\right\}
$$

Solution. Denote $Z:=\sum_{i=1}^{n} \alpha_{i} B\left(t_{i}\right)$. Since $B(t)$ is a Gaussian process, Z has normal distribution. Now compute the mean and the variance of Z :

$$
E(Z)=E\left(\sum_{i=1}^{n} \alpha_{i} B\left(t_{i}\right)\right)=\sum_{i=1}^{n} \alpha_{i} E\left(B\left(t_{i}\right)\right)=0
$$

and

$$
\begin{aligned}
\operatorname{Var}(Z) & =\operatorname{Var}\left(\sum_{i=1}^{n} \alpha_{i} B\left(t_{i}\right)\right) \\
& =\operatorname{Cov}\left(\sum_{i=1}^{n} \alpha_{i} B\left(t_{i}\right), \sum_{j=1}^{n} \alpha_{j} B\left(t_{j}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \operatorname{Cov}\left(B\left(t_{i}\right), B\left(t_{j}\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \min \left\{t_{i}, t_{j}\right\} .
\end{aligned}
$$

