MATH 180C HOMEWORK 9. SOLUTIONS

SPRING 2023

1. Pinsky and Karlin, Ezercise 8.2.3. Suppose that net inflows to a reservoir are described
by a standard Brownian motion. If at time 0, the reservoir has x = 3.29 units of water, what
is the probability that the reservoir never becomes empty in the first ¢ = 4 units of time?

Solution. Let X; denote the amount of water in the reservoir at time ¢t. We have to
compute

(1) P(min X, > 0).

0<t<4

Let (B:)i>o be a standard Brownian motion starting from 0 such that X; = 3.29 + B;. Then

(2) P(min X; > 0) = P(min (3.29+ B;) > 0) = P(min B, > —3.29).
0<t<4 0<t<4 0<t<4
Using the reflection symmetry of the Brownian motion at zero (lecture 24, page 5),
(3) P(min B, > —3.29) = P(max B, < 3.29).
0<t<d 0<t<4

Finally, we can compute the last quantity using the reflection principle (lecture 25, page 9)

( 3.29

(4) P(max B, < 3.29) = P(|By| < 3.29) = P(|B,| < T> ~0.9.

0<t<4

2. Pinsky and Karlin, Exercise 8.2.5. Let 1y be the largest zero of a standard Brownian
motion not exceeding a > 0. That is 79 = max{u > 0; B(u) = 0 and u < a}. Show that

2
(5) P(my < t) = —arcsin/t/a.
7r

Solution. Firstly, note that for any ¢ < a
(6) P(rg <t)=P(Vu € (t,a],B(u) #0) =1—6(t,a),

where 6(t,a) is the probability that there exists a standard Brownian motion has zero on
the interval (¢,a] (see lecture 26, page 3). From the same lecture we know that

2
(7) 0(t,a) = — arccos \/t/a.
T
We conclude that
2 2
(8) P(ro<t)=1—-0(t,a) = —<g — arccos t/a) = —arcsin/t/a.
s T

3. Pinsky and Karlin, Ezericse 8.3.3. The net inflow to a reservoir is well described by

a Brownian motion. Because a reservoir cannot contain a negative amount of water, we
1
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suppose that the water level R(t) at time ¢ is a reflected Brownian motion. What is the
probability that the reservoir contains more than 10 units of water at time ¢ = 257 Assume
that the reservoir has unlimited capacity and that R(0) = 5.

Solution. Let (B;);>0 be a standard Brownian motion such that R(t) is given by
(9) R(t) = |5+ Bil,

i.e., the amount of water is modeled by a Brownian motion starting from R(0) = 5 and
reflected at zero (taking absolute value). Then

(10) P(R(25) > 10) = P(5 + Bas < —10) + P(5 + Bas > 10)
(11) = P(Bgs < —15) + P(By; > 5)

(12) =P(B; <-3)+P(B; >1)

(13) ~ 0.16.

4. Pinsky and Karlin, Ezercise 8.4.2. A Brownian motion (X};);>o has parameters p = 0.1
and o = 2. Evaluate the probability of exiting the interval (a, b] at the point b starting from
Xo=0for b=1, 10 and 100 and a = —b. Why do the probabilities change when a/b is the
same in all cases?

Solution. Denote by u}”

point z. Compute

the probability that the process X exits the interval (—z, x] at

2 2-0.1

— = ——=0.05.

o? 4

Using the formula for the gambler’s ruin probability for the Brownian motion with drift
(lecture 27, page 7), we have that

(14)

1 — 005

1) _ ~
Similarly,
(16) W' ~ 062, ul™ ~0.99.

Intuitive explanation: the larger is b, the longer it takes to reach either b or —b, the stronger
is the influence of the drift.

5. Pinsky and Karlin, Exercise 8.4.3. A Brownian motion (X;) has parameters p = 0.1
and o = 2. Evaluate the mean time to exit the interval (a,b] from Xy =0 for b =1, 10 and
100 and @ = —b. Can you guess how this mean time varies with b for b large?

Solution. Denote by T the mean time to exit the interval (—x,x). Similarly as in
the previous problem, using the formula for the mean time in the gambler’s ruin problem
(lecture 27, page 7), we have that

1
(17) T = ﬂ(ug”2 — 1) ~ 0.25,

(18) T ~ 24,5 T ~ 986.
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Intuitive explanation: the larger is the value b, the longer it takes to reach either b or —b, and
thus the stronger is the role of the deterministic drift (linear in ¢) compared to the random
fluctuations (of order v/#). So for b > 1, the mean time behaves as % = 100.



