MATH180C: Introduction to Stochastic Processes II

https://mathweb.ucsd.edu/~ynemish/teaching/180c

Today: Poisson process as a renewal process

Next: PK 7.2-7.3, Durrett 3.1

Week 5:

HW4 due Friday, May 5 on Gradescope

Expectation of Wn

Proposition 2. Let
$$N(t)$$
 be a renewal process with intervenewal times $X_1, X_2, ...$ and renewal times $(W_n)_{n\geq 1}$. Then

$$E(W_{N(t)+1}) = E(X_1) E(N(t)+1)$$

$$= \mu(M(t)+1)$$
where $\mu = E(X_1)$.

$$E(X_1 + X_2 + ... + X_{N(t)+1}) = E(X_1) + E(X_2 + ... + X_{N(t)+1}) = E(X_1) + E(X_2 + ... + X_{N(t)+1}) = E(X_2 + ... + X_{N(t)+1}) = E(X_2 + ... + X_{N(t)+1}) = E(X_2 + X_3 + X_4 + N(t) = 2)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

$$+ E(X_2 + X_3 + X_4 + N(t) = 3) P(N(t) = 3)$$

Renewal equation

Proposition 3. Let $(N(t))_{t\geq 0}$ be a renewal process with interrenewal distribution F. Then M(t) = E(N(t)) satisfies $M(t) = F(t) + M \times F(t) = F(t) + \int_{M} (t-x) dF(x)$

Proof. We showed in Proposition 1 that

$$M = \sum_{n=1}^{\infty} F_{n}$$

Then $M \times F = \begin{pmatrix} \infty \\ -1 \end{pmatrix} \times F = \sum_{h=1}^{\infty} F^{*h} - F$

Poisson process as a renewal process The Poisson process N(t) with rate 1>0 is a renewal process with $F(x) = 1 - e^{-\lambda x}$ - sojourn times S; are i.i.d., Si~Exp(λ) - Si represent intervals between two consecutive events (arrivals of customers) - Wn = Est - we can take Xi= Si-1 in the definition of the renewal process X4 X_1 Wu WI WZ

Poisson process as a renewal process =
$$\int G(t-z) dF(z)$$

Ne know that $N(t) \sim Pois(At)$, so in particular

 $E(N(t)) = \lambda t$
 $E(N(t)) = \lambda t$

Poisson process as a renewal process (cont.)

$$\sum_{k=0}^{\infty} \left(\frac{1}{k!} - \frac{1}{k!} \right)^{k} = \lambda t$$

$$\sum_{k=0}^{\infty} \left(\frac{1}{k!} - \frac{1}{k!} \right)^{k} = k$$

$$\sum_{k=0}^{\infty} \left(\frac{1}{k!} - \frac{1}{k!} - \frac{1}{k!} \right)^{k} = k$$

$$\sum_{k=0}^{\infty} \left(\frac{1}{k!} - \frac{1}{k!} - \frac{1}{k!} \right)^{k} = k$$

$$= e^{-\lambda t} \sum_{k=0}^{\infty} \left(\frac{\lambda t}{\lambda t} \right)^{k} \sum_{k=0}^{\infty} \left(\frac{\lambda t}{\lambda t} \right)^{k}$$

$$= e^{-\lambda t} \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{\lambda t}{\lambda t} \right)^{k}$$

$$= e^{-\lambda t} \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{\lambda t}{\lambda t} \right)^{k}$$

$$= e^{-\lambda t} \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{\lambda t}{\lambda t} \right)^{k}$$

$$= e^{-\lambda t} \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \left(\frac{\lambda t}{\lambda t} \right)^{k}$$

$$= e^{\lambda t} \sum_{k=1}^{\infty} \frac{(\lambda t)^{k}}{(k-1)!} = \lambda t e^{\lambda t} \sum_{k=1}^{\infty} \frac{(\lambda t)^{k}}{(k-1)!} = \lambda t$$

$$M(t) = \lambda t$$

Renewal density

Proposition Let N(t) be a renewal process with continuous interrenewal times
$$X_i$$
 having density $f(x)$. Denote $m(t) = \sum_{i=1}^{\infty} f^{*n}(t)$. Then $M(t) = \int_{i=1}^{\infty} m(x) dx$ and $m(t) = f(t) + m*f(t)$ (*)

Proof: $\frac{d}{dt} F^{*n}(t) = \left(\frac{d}{dt} F^{*m+1}\right) *f(t) = f^{*n}(t)$

Example: Compute the renewal density for PP using (*).

 $f(x) = \lambda e^{\lambda x}$, so (*) becomes $m(t) = \lambda e^{\lambda t} + \int_{i=1}^{\infty} m(t-x) \lambda e^{\lambda x} dx = \lambda e^{\lambda t} + \int_{i=1}^{\infty} m(x) \lambda e^{\lambda x} dx$
 $= \lambda e^{\lambda t} \left(1 + \int_{i=1}^{\infty} m(x) e^{\lambda x} dx\right)$

$$(cont.)$$

$$e^{\lambda t} m(t) = \lambda (1 + \int e^{\lambda x} m(x) dx$$

$$(d(e^{\lambda t} m(t)) = \lambda e^{\lambda t} m(t) dx$$

$$e^{\lambda t} m(t) = \lambda \left(1 + \int e^{\lambda x} m(x) dx \right) \leftarrow differentiate$$

$$\int \frac{d}{dt} \left(e^{\lambda t} m(t) \right) = \lambda e^{\lambda t} m(t) \qquad e^{\lambda t} m(t) = e^{\lambda t} \cdot C$$

$$\Rightarrow m(s) = \lambda$$

$$m(s) = \lambda$$

Indeed,
$$M(t) = \int_0^t \lambda dt = \lambda t$$