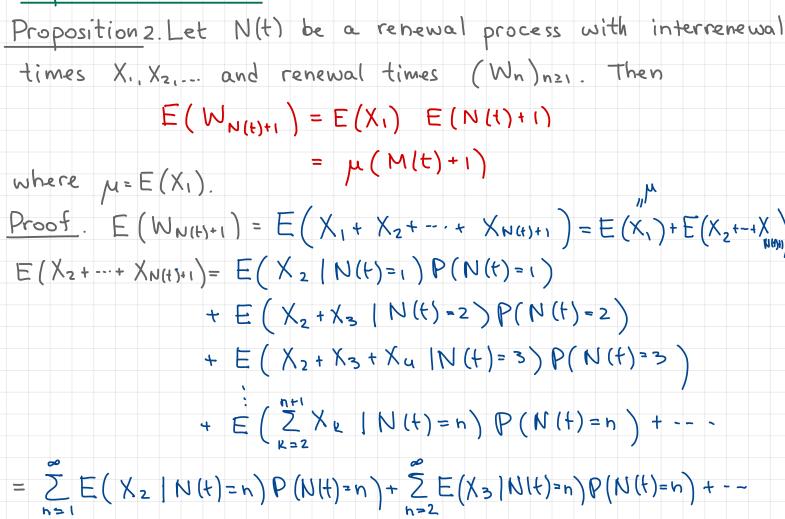
MATH180C: Introduction to Stochastic Processes II https://mathweb.ucsd.edu/~ynemish/teaching/180c

Today: Poisson process as a renewal process Next: PK 7.2-7.3, Durrett 3.1

Week 5:

HW4 due Friday, May 5 on Gradescope

Expectation of Wn



<u>Proposition 3.</u> Let $(N(t))_{t\geq 0}$ be a renewal process with interrenewal distribution F. Then M(t) = E(N(t))satisfies

Proof. We showed in Proposition 1 that $M = \sum_{n=1}^{\infty} F^{*n}$.

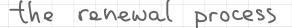
Then M*F=

Poisson process as a renewal process

The Poisson process N(t) with rate $\lambda > 0$ is a

renewal process with $F(x) = 1 - e^{\lambda x}$.

- sojourn times S; are i.i.d., $Si \sim Exp(\lambda)$
- Si represent intervals between two consecutive
 - events (arrivals of customers)
- $-W_n = \sum_{i=1}^{n} S_i$
- we can take X: = Si-1 in the definition of



Poisson process as a renewal process

We know that $N(t) \sim Pois(\lambda t)$, so in particular E(N(t)) = λt

Example Compute $M(t) = \sum_{n=1}^{\infty} F^{*n}(t)$ for PP

 $F_2(t)$ =

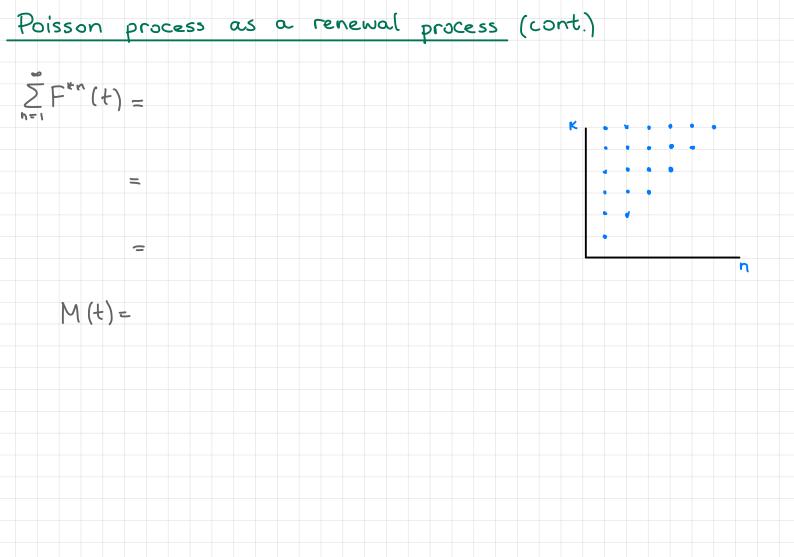
Denote $Y_{k}(t) = \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}$:

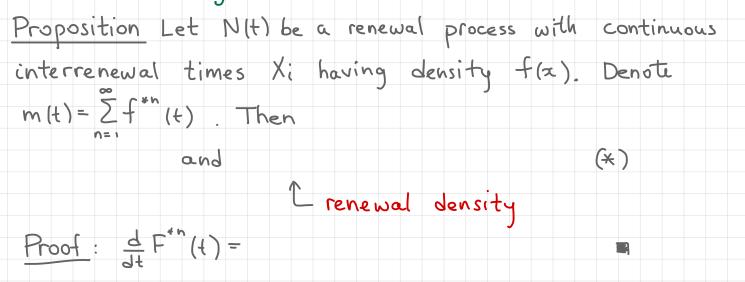
 $\Psi_{k} \star F(t) =$

F*F(t)=

F*>(+) =

 $F^{*n(t)} =$



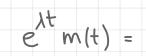


Example: Compute the revewal density for PP using (*).

f(x)= $\lambda e^{\lambda x}$, so (*) becomes

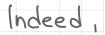
m(t) =

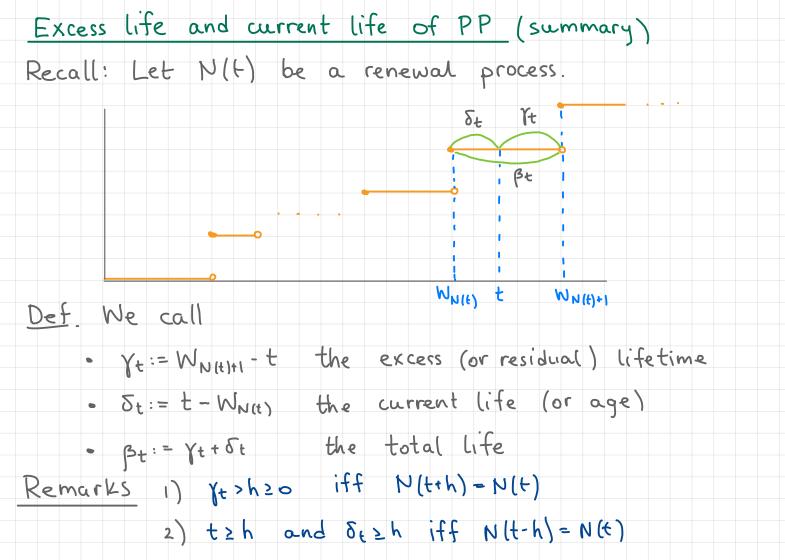
5



- differentiale

 \Rightarrow



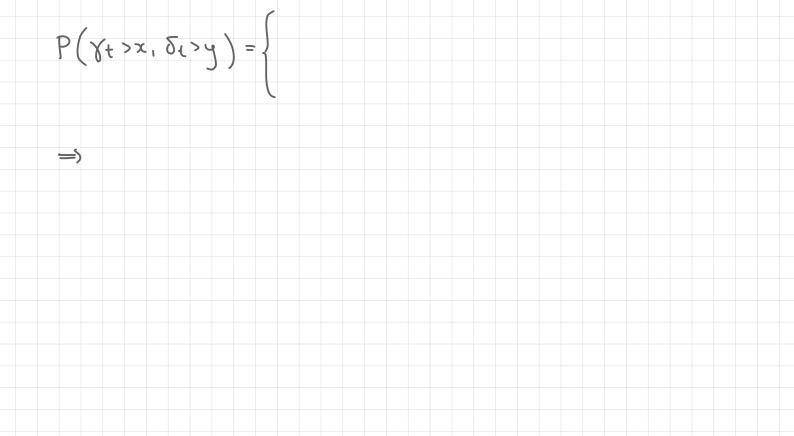


Excess life and current life of PP

- Let N(t) be a PP. Then
- · excess life
 - P((t > x) =
- current life δ_t
 - $P(\delta_t > x) =$
- total life $B_t = \gamma_t + \delta_t$
 - $E(\gamma_{t}+\delta_{t}) =$

Excess life and current life of PP (cont.)

· Joint distribution of (ye, Se)



• traffic flow : distances between successive cars are

assumed to be i.i.d. random variables

· counter process: particles/signals arrive on a device and lock it for time z; particles arrive according to a PP; times at which the counter unlocks form a renewal process arrival of partictes 0 W3 W, W2 Wy state of the 0 τ τ counter e closed - Open

operating / non-operating etc), switches between then,

- Markov chains: if $(Y_n)_{n\geq 0}$, $Y_n \in \{0, 1, \dots, 5\}$ is a recurrent
 - MC starting from Yo=k, then the times of returns
 - to state k form a renewal process. More precisely
 - define $W_1 = \min\{n > 0 : Y_n = k\}$

 $W_{p=min\{n>W_{p-1}:Y_{n=k}\}}$

Similarly for continuous time MCs.

Strong Markov property!

· Queues. Consider a single-server queueing process

customers arriving server busy/idle

service -lime

(i) if customer arrival times form a renewal process

then the times of the starts of successive idle periods

generate a second renewal time

(ii) if customes arrive according to a Poisson process,

then the times when the server passes from

busy to free form a renewal process

Asymptotic behavior

Asymptotic behavior of renewal processes

Lel N(t) be a renewal process with interrenewal

times Xi, Xi∈(0,∞).

Thm

Proof. N(t) is nondecreasing, therefore No is the total number of events ever happened.

Thm (Pointwise renewal thm).

Elementary Renewal Theorem

Thm. If M(t) = E(N(t)) and $E(X_1) = \mu$, then

Proof (Only for bounded Xi: 3 K s.t. P(Xi K)=1)

First note that

In lecture 11 we showed that

so M(t) =

 $\frac{M(t)}{t}$ =

If Xi ≤ K, then

Asymptotic distribution of N(t)

Thm. Let N(t) be a renewal process with $E(X_1) = \mu$ and $Var(X_1) = \delta^2$, then

