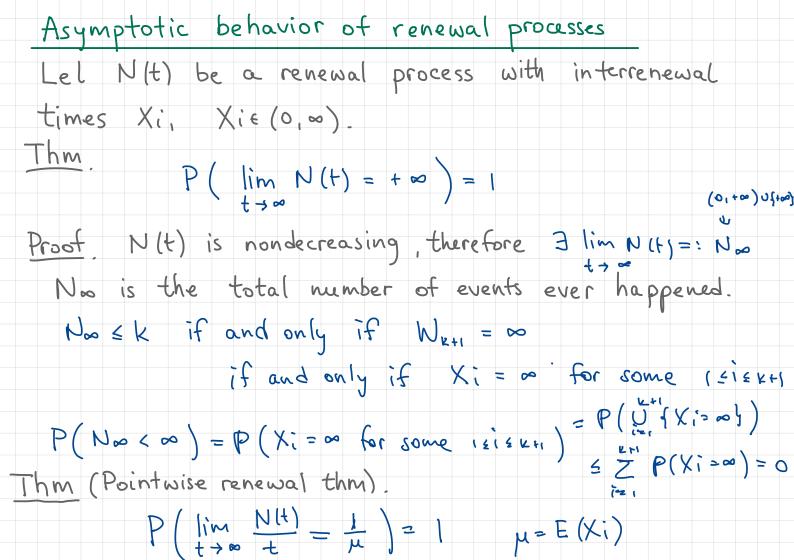
MATH180C: Introduction to Stochastic Processes II https://mathweb.ucsd.edu/~ynemish/teaching/180c Today: Asymptotic behavior of renewal processes Next: PK 7.5, Durrett 3.1, 3.3 Week 6:

HW5 due Friday, May 12 on Gradescope



Elementary Renewal Theorem

Thm. If M(t) = E(N(t)) and $E(X_1) = \mu$, then

 $\lim_{t \to \infty} \frac{|\mathsf{M}(t)|}{t} = \frac{1}{\mu}$

Proof (Only for bounded Xi: 3 K s.t. P(Xi K)=1)

First note that WN(+)+1 = t + Y+

In lecture 13 we showed that E(WNIH) = µ(M(+)+1),

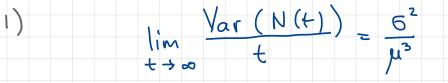
So $M(t) = \frac{t + E(\gamma t)}{\mu} - 1$

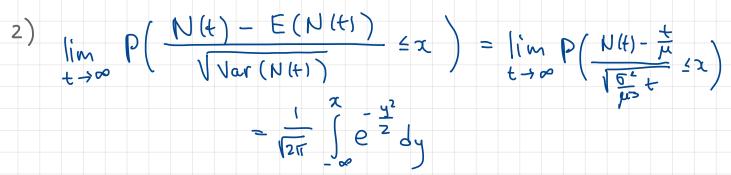
 $\frac{M(t)}{t} = \frac{1}{\mu} + \frac{1}{t} \left(\frac{E(\chi_t)}{\mu} - 1 \right) \rightarrow \frac{1}{\mu} \text{ as } t \rightarrow \infty$

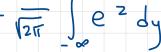
If $X_i \leq K$, then $Y_t \leq K \Rightarrow E(Y_t) \leq K$ Ex: $(X_n)_{n>0}$: 1) $P(\lim_{n \to \infty} X_n = 0) = 1$ 2) $\lim_{n \to \infty} E(X_n) > 0$

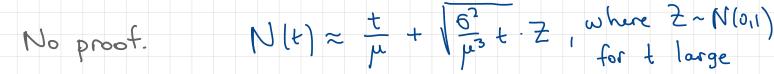
Asymptotic distribution of N(t)

Thm. Let N(t) be a renewal process with $E(X_1) = \mu$ and $Var(X_1) = 5^2$, then









Elementary renewal theorem and continuous Xi's

Two more results (without proofs) about the limiting

behaviour of M(t) for models with continuous

interrenewal times.

Thm. Let $E(X_1) = \mu$ and let $m(t) = \frac{d}{dt}M(t)$ be the

renewal density. Then

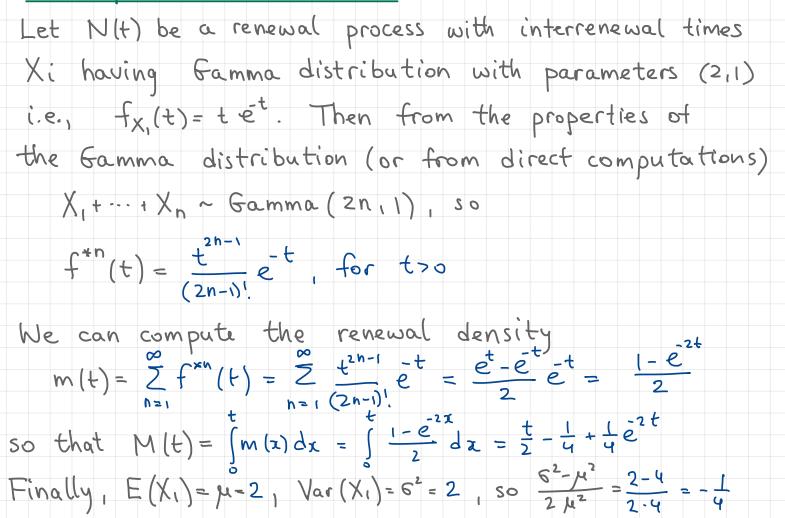
 $\lim_{t \to \infty} m(t) = \lim_{t \to \infty} \frac{dM(t)}{dt} = \frac{1}{4}$

Remark $\lim_{t\to\infty} \frac{f(t)}{t} = \lambda$ does not imply in general $\lim_{t\to\infty} f(t) = d$

(E.g., take f(t) = t + sin(t))

<u>Thm</u>. If additionally $Var(X_i) = 6^2$, then

$$im \left(M(t) - \frac{t}{\mu} \right) = \frac{6^2 - \mu^2}{2 \mu^2}$$



Joint distribution of age and excess life

From the definition of y_t and $\delta_t = p(t^{t+y})^{-k} \delta_t$ it $P(\delta_t \ge x, y_t > y)$ (x = t) $\sum_{x=0}^{k} P(t^{t+x})^{-k} \delta_t$ if $P(\delta_t \ge x, y_t > y)$ (x = t) $\sum_{x=0}^{k} P(t^{t+x})^{-k} \delta_t$ is = $P(W_{N(t)} \leq t - x, W_{N(t)+1} > t + y) = P(N(t - x) - N(t + y))$

· Partition wrt the values of N(t)

- $W_{N(t)}$ t $W_{N(t)+1}$ $= \sum P(W_{k} \leq t - x, W_{k+1} > t + y)$
- condition on the value of W_k (c.d.f. of W_k is $F^{*k}(t)$ $P(W_l > t+y) = \sum_{k=1}^{\infty} P(W_k \le t-x, W_{k+l} > t+y | W_k = u) dF(u)$ $= 1 F(t+y) + \sum_{k=1}^{\infty} P(W_k \le t-x, W_{k+l} > t+y | W_k = u) dF(u)$
- $= 1 F(t+y) + \sum_{k=1} \int P(u + X_{k+1} > t+y) dF^{*k}(u)$
- $= 1 F(try) + Z \int_{k=1}^{\infty} (1 F(try-u)) dF^{**}(\omega)$

