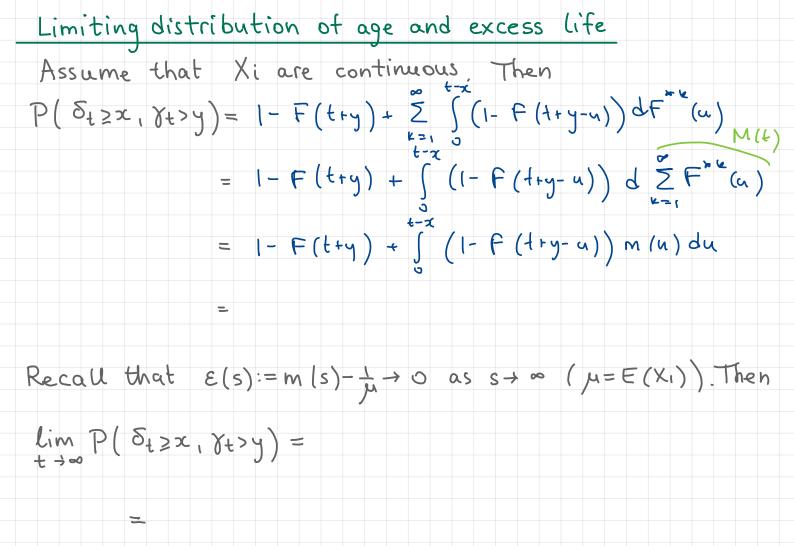
MATH180C: Introduction to Stochastic Processes II https://mathweb.ucsd.edu/~ynemish/teaching/180c Today: Asymptotic behavior of renewal processes Next: PK 7.5, Durrett 3.1, 3.3 Week 6:

HW5 due Friday, May 12 on Gradescope



Joint/limiting distribution of $(\chi_{\ell}, \delta_{\ell})$ Thm. Let F(t) be the c.d.f. of the interrenewal times. Then (a) $P(\chi_{\ell}, y, \delta_{\ell} \ge x) = I - F(t+y) + \sum_{k=1}^{\infty} \int_{0}^{t-x} (I - F(t+y-u)) dF^{*k}(u)$ $= I - F(t+y) + \int_{0}^{t-x} (I - F(t+y-u)) dM(u)$

(b) if additionally the interrenewal times are continuous, $\lim_{k \to \infty} P(\chi_{t} > y_{1}, \delta_{t} \ge \chi) = \frac{1}{\mu} \int_{\chi_{t} y} (1 - F(\omega)) d\omega \quad (*)$

If we denote by (yo, So) a pair of r.v.s with distribution (*)

then yoo and to are continuous r.v.s with densities

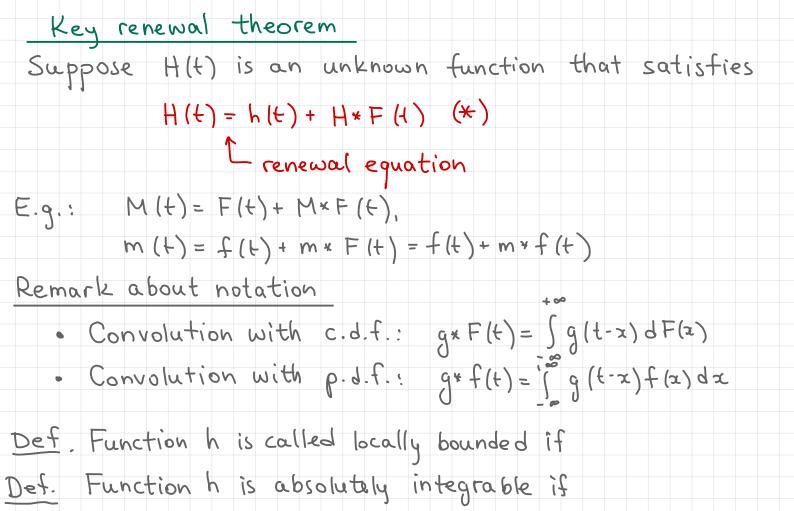
 $f_{\chi_{\infty}}(x) = f_{\xi_{\infty}}(x) =$

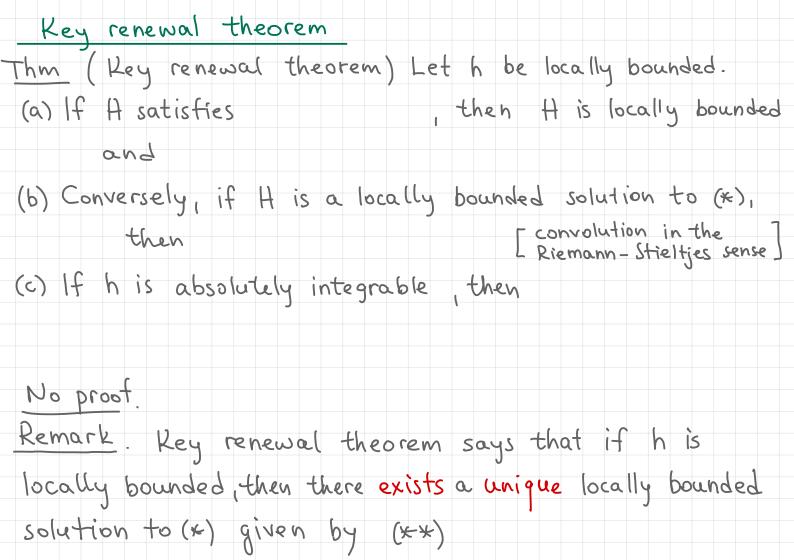
Example

Renewal process (counting earthquakes in California) has interrenewal times uniformly distributed on [0,1] (years). (a) What is the long-run probability that an earthquake will hit California within 6 months?

(b) What is the long-run probability that it has been

at most 6 months since the last earthquake?





Examples

· Renewal function: M(t) satisfies

and

- F(t) is nondecreasing, so (c) does not apply to
 - the renewal equation for M(t)
- Renewal density: m(t) satisfies

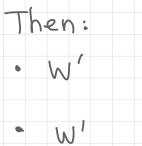
and

- (in the Riemann Stieltjes sense)
- f is absolutely integrable, so

Important remark

Let
$$W = (W_1, W_2, ...)$$
 be arrival times of a renewal process,
and denote $W' = (W_1', W_2', ...)$ with
 $W_1' = W_{1+1} - W_1 = X_2 + X_3 + \dots + X_{i+1}$,

shifted arrival times.



Example

Example. Compute lim $E(\gamma_t)$. Take $H(t) = E(\gamma_t)$

- If X, >t, then ; if X, <t condition on X, =s
- $E(\gamma_{t}) =$
- E () + 1 x, +)=

J

=

H(t) = $H(t) = h(t) + h \times M(t)$ with h(t) =

Finally, we have that

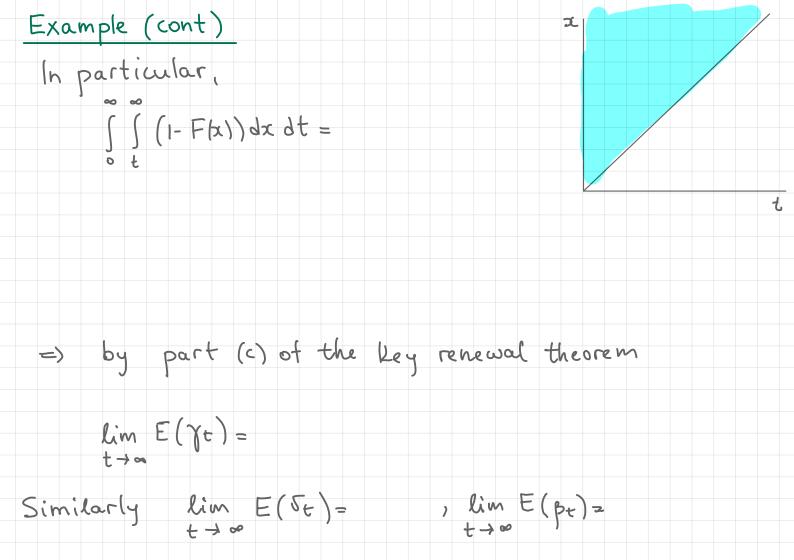
and

Since we assume that $E(X_1) = 6^2$,

 $E((X_{i}-t)/I_{X_{i}}) =$

Example (cont)

Assume that $E(X_1) = \mu$, $Var(X_1) = 6^2$



Example

What is the expected time to the next earthquake

in the long run?

For X, ~ Unif[0.1]

therefore, $\lim_{t\to\infty} E(\chi_t) =$

And the long run expected time between two

consecutive earthquakes is